Contents

1 Lecture 1: Introduction 2

1.1 Incomplete Repertory of Tasks 2

1.2 Decision-theoretic Framework 2

2 Lecture 2: Evaluation of Statistical Procedures I 2

2.1 How to compare δ? 2

2.2 Comparing risk function I: Bayes risk 3

2.3 Bayes theorem 3

2.4 Bayes risk revisited 3

3 Lecture 3: Location Estimation, Bayes Rules for Parametric Models 4

3.1 Prerequisites & Bayes risk revisited 4

3.2 Estimation in parametric models 4

4 Lecture 4: Evaluation of Statistical Procedures II 5

4.1 Comparing risk function II: minimax 5

4.2 Connection between minimax and Bayes 5

4.3 Admissibility 6

4.4 Unbiasedness 6

5 Lecture 5: Building Statistical Procedure I 7

5.1 Sufficient statistics 7

5.2 Complete statistics 9

5.3 Cramér-Rao bound 10

6 Lecture 6: Building Statistical Procedure II 13

6.1 Substitution principle 13

6.2 Consistency 15

6.3 Asymptotic normality 15

6.4 Maximum likelihood estimate 16

7 Lecture 7: Estimating the precision of estimates 16

7.1 Bootstrap 16

7.2 Delta method 18

8 Lecture 8: Confidence interval 18

8.1 Bayesian confidence/probability intervals 18

8.2 General confidence intervals 18

9 Lecture 9: Hypothesis testing 20

9.1 Setup 20

9.2 Testing evaluation 20

9.3 p-value 21
1 Lecture 1: Introduction

1.1 Incomplete Repertory of Tasks

- Estimation. E.g. estimating someone’s weight.
- Testing. E.g. testing whether a treatment will work.
- Classification. E.g. email spam filter.
- Ranking...

1.2 Decision-theoretic Framework

- **Data** $x \in X$, an outcome of random element X, a point in the sample space X.
- **Action space** A, the space of decisions
 - For classification, A is finite with at least two elements.
 - For testing, two possible elements: accept/reject.
- **Decision rule** δ, procedure, any (possibly randomized) function. $\delta : X \mapsto A$.
- **Model** P, from which X is drawn, an element of some collection of distributions \mathcal{P}.
 - Parametric model $\mathcal{P} = \{P_\theta\}$, with θ in some space Θ (say \mathbb{R}^n).
- **Loss function** $l(\delta(x), P)$, the loss incurred when action $a = \delta(x)$ is chosen, and X is from P. Usually $l \geq 0$.

2 Lecture 2: Evaluation of Statistical Procedures I

2.1 How to compare δ?

- If $a = \delta(x)$ is randomized, then first average the loss over all possible a:
 $$\bar{l}(\delta(x), P) = E_a(l(\delta(x), P)).$$
- Compare based on risk:
 $$r_\delta(P) = E_{x \sim P} [l(\delta(x), P)] = \int l(\delta(x), P) dP(x).$$
 - If δ is randomized, then replace l by \bar{l} first.
 - It depends on P.

Estimation of the mean of normal.
\(X \sim \mathcal{N}(\theta, 1) \), to estimate \(\theta \) with quadratic loss \(l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2 \). Given an observation \(X \), consider two estimators:

\[
\hat{\delta}(X) = \hat{\theta}(X) = X; \quad \tilde{\delta}(X) = \tilde{\theta}(X) = 0.
\]

Their respective risks are given by

\[
r_{\hat{\delta}}(P) = E[(X - \theta)^2] = Var(X) = 1 \]
\[
r_{\tilde{\delta}}(P) = E[(0 - \theta)^2] = E(\theta^2) = \theta^2
\]

Therefore, none of \(\hat{\delta}(x) \) and \(\tilde{\theta}(x) \) is dominant, because the risks depend on \(\theta \), that is, \(P \), the distribution of \(X \).

2.2 Comparing risk function I: Bayes risk

- Prior distribution \(\Pi \) of \(P \) over distribution space \(\mathcal{P} \).
 - In parametric cases, prior \(\Pi \) of \(\theta \) over its space \(\Theta \).
 - Bayes inference, given \(X \), we can update our belief on \(P \)

 \[
 Pr(P|X) = \frac{Pr(X|P)Pr(P)}{Pr(X)} \propto Pr(X|P)\Pi(P)
 \]

- **Bayes risk** is defined by

 \[
 R^\Pi_\delta = E_{P \sim \Pi}[r_\delta(P)] = \int r_\delta(P)d\Pi(P).
 \]

- It only depends on the decision rule \(\delta \) and the prior \(\Pi \).

2.3 Bayes theorem

- Suppose that \(f_{U,V}(u,v) \) is a joint density of random elements \(U \) and \(V \). The (marginal) density of \(V \) is

 \[
 f_V(v) = \int f_{U,V}(u,v)du.
 \]

 The conditional density of \(U \) given \(V \) is

 \[
 f_{U|V}(u|v) = \frac{f_{U,V}(u,v)}{f_V(v)} = \frac{f_{U,V}(u,v)}{\int f_{U,V}(u,v)du}.
 \]

 The **Bayes theorem** states

 \[
 f_{V|U}(v|u) = \frac{f_{U,V}(u,v)}{f_U(u)} = \frac{f_{U,V}(u,v)}{\int f_{U,V}(u,v)dv} = \frac{f_{U,V}(u|v)f_V(v)}{\int f_{U|V}(u|v)f_V(v)dv}.
 \]

2.4 Bayes risk revisited

- Let the **posterior risk** be

 \[
 R^\Pi(\delta(X)|P) = E_{P \sim \Pi}[l(\delta(X), P)|X].
 \]

- Bayes risk can be computed via posterior distribution

 \[
 R^\Pi_\delta = E_{P \sim \Pi}[r_\delta(P)] = \int r_\delta(P)d\Pi(P) = \int r_\delta(p)f_P(p)dp
 \]

 \[
 = E_{P \sim \Pi}[E_{X \sim P}[l(\delta(X), P)|X]] = \int \left(\int l(\delta(x), P)f_{X|P}(x|p)dx \right)f_P(p)dp
 \]

 \[
 = E_{(X,P) \sim (P,\Pi)}[l(\delta(X), P)] = \int \int l(\delta(x), P)f_{X,P}(x,p)dx dp
 \]

 \[
 = E_{X \sim P}[E_{P \sim \Pi}[l(\delta(X), P)|X]] = \int \left(\int l(\delta(x), P)f_{P|X}(p|x)dp \right)f_X(x)dx
 \]

 \[
 = E_{X \sim P}[R^\Pi(\delta(X)|P)] = \int R^\Pi(\delta(X)|P)f_X(x)dx.
 \]

This will be favourable when posterior distribution \(f_{P|X}(p, x) \) is easily accessible.
3 Lecture 3: Location Estimation, Bayes Rules for Parametric Models

3.1 Prerequisites & Bayes risk revisited

- Assume that $X \sim Q$ and we are interested in estimating some characteristic quantity of the distribution Q, say $\theta(Q)$, where $\theta(\cdot)$ is a functional.

- Some characteristic quantities of the distribution Q
 - Mean: $\theta(Q) = \int x dQ(x)$. Not always exists (e.g. Cauchy).
 - Median: $\theta(Q)$ satisfies
 \[\Pr(X \leq \theta(Q)) \geq \frac{1}{2}, \Pr(X \geq \theta(Q)) \geq \frac{1}{2} \]
 - Quantile: For $\tau \in (0, 1)$, $\theta_r(Q)$ satisfies
 \[\Pr(X \leq \theta_r(Q)) \geq \tau, \Pr(X \geq \theta_r(Q)) \geq 1 - \tau. \]
 When $\tau = \frac{1}{2}$, it is median.

- Evaluation of estimation quality: loss
 - Quadratic loss: $l^{(2)}(a, Q) = (a - \theta(Q))^2$, then $r^{(2)}_\delta(Q) = E^{(2)}_{X \sim Q}[(\delta(X) - \theta(Q))^2]$.
 - Absolute loss: $l^{(1)}(a, Q) = |a - \theta(Q)|$, then $r^{(1)}_\delta(Q) = E^{(1)}_{X \sim Q}(|\delta(X) - \theta(Q)|)$.
 - 0-1 loss: $l^{(0)}(a, Q) = I(a \neq \theta(Q))$, then
 \[
 r^{(0)}_\delta(Q) = E^{(0)}_{X \sim Q}[I(\delta(X) \neq \theta(Q))] \\
 = \Pr(\delta(X) \neq \theta(Q)) \cdot I(\delta(X) \neq \theta(Q)) + \Pr(\delta(X) = \theta(Q)) \cdot I(\delta(X) \neq \theta(Q)) \\
 = \Pr(\delta(X) \neq \theta(Q)) \cdot 1 + \Pr(\delta(X) = \theta(Q)) \cdot 0 \\
 = \Pr(\delta(X) \neq \theta(Q)).
 \]
 The second equation is because X can choose two types of values, those $\delta(X) \neq \theta(Q)$ and those $\delta(X) = \theta(Q)$.

- Bayes approach
 - Get the posterior distribution given X.
 * Know the posterior distribution of Q, then compute $\theta(Q)$.
 * Or know the posterior distribution of θ directly.
 - Observe the loss function in question and determine its corresponding characteristic value.
 * For $l^{(2)}$, the solution is the mean of posterior distribution.
 * For $l^{(1)}$, the solution is the median of posterior distribution.
 * For $l^{(0)}$, the solution is the mode of posterior distribution.

3.2 Estimation in parametric models

- Assume we have n independent variables $X_i(i = 1, \cdots, n)$ jointly from distribution P, which is determined by Q, the identical distribution of each individual X_i. Further assume that $\theta(Q)$ is one-to-one map.

- To estimate the quantity $\theta(P)$ given data, we need its posterior distribution. (No loss function for the moment)
Posterior of normal.

\(X_i \sim \mathcal{N}(\mu, \sigma) \), to estimate \(\mu \) given \(X_i = x_i \). Assume normal prior for \(\mu \):
\(\mu \sim \mathcal{N}(\mu_0, \sigma_0) \). That is,

\[
\pi(\mu) = \frac{1}{\sigma_0 \sqrt{2\pi}} \exp\left(-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right)
\]

\[
q(x|\mu) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)
\]

The posterior of \(\mu \) given data \(x_1, \cdots, x_n \) is

\[
f(\mu) \propto \prod_{i=1}^{n} q(x_i|\mu) \pi(\mu)
\]

\[
= \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2} - \frac{(\mu - \mu_0)^2}{2\sigma_0^2}\right)
\]

\[
= \exp\left(-\frac{1}{2} \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \mu^2 + \left(\frac{n\bar{x}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2} \right) \mu \right).
\]

That is,

\[
\mathcal{N}\left(\frac{\bar{x} \sigma^2 + \mu_0}{\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2}}, \frac{1}{\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2}} \right).
\]

In general, if a random variable \(X \) has a density of the form \(K \exp(ax^2 + bx + c) \), then

- \(a < 0 \), otherwise the integral will not converge to 1;
- The density can be expressed as

\[
K \exp(ax^2 + bx + c) = K \exp\left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \exp\left[a \left(x - \left(-\frac{b}{2a} \right) \right)^2 \right],
\]

which is the density of a normal distribution with \(\mu = -\frac{b}{2a} \) and \(\sigma^2 = -\frac{1}{2a} \);
- \(c \) is free and \(K = K(a, b, c) \) is a normalizing positive constant.

4 Lecture 4: Evaluation of Statistical Procedures II

4.1 Comparing risk function II: minimax

- The minimax risk ("worst case")

\[
\bar{R}_\delta = \sup_{P \in \mathcal{P}} r_\delta(P).
\]

- Minimax rule is the rule that minimize minimax risk.

4.2 Connection between minimax and Bayes

- Suppose \(\delta^\Pi \) is the Bayes rule for some prior \(\Pi \), i.e., \(R^\Pi_{\delta^\Pi} = \inf_{\delta^\Pi} R^\Pi_{\delta} \) and suppose that for all \(P \), \(r_{\delta^\Pi}(P) \leq R^\Pi_{\delta^\Pi} \), then \(\delta^\Pi \) is minimax (and \(\Pi \) is called a least favourable prior).

 - Proof: If \(\delta^\Pi \) were not minimax, then there would exist \(\delta \) such that

 \[
 \sup_{P} r_{\delta}(P) < \sup_{P} r_{\delta^\Pi}(P) \leq R^\Pi_{\delta^\Pi}.
 \]

As the average never exceeds sup, and the average of a constant is that constant, we would have a contradiction with the assumptions:

\[
R^\Pi_{\delta} = E_{P \in \mathcal{P}}[r_{\delta}(P)] \leq \sup_{P} r_{\delta}(P) < \sup_{P} r_{\delta^\Pi}(P) \leq R^\Pi_{\delta^\Pi}.
\]

- If \(\delta \) is the Bayes rule with respect to some prior \(\Pi \), and if it has constant risk, \(r_{\delta}(P) = c \) for all \(P \), then \(\delta \) is minimax.
In fact, \(r_{\delta n}(P) = R^{\Pi}_{\delta n} = c \) in such cases.

4.3 Admissibility

- \(\delta \) is **admissible** if there is no \(\tilde{\delta} \) such that \(r_{\tilde{\delta}}(P) \leq r_{\delta}(P) \) with strict inequality \(<\) at least for one \(P \).

- Connection to Bayes rule: if \(\delta^\Pi \) is the unique Bayes rule with respect to a prior \(\Pi \), then \(\delta^\Pi \) is admissible.

 \[
 R^{\Pi}_{\delta} = E_{P \sim \Pi}[r_{\delta}(P)] \leq E_{P \sim \Pi}[r_{\delta n}(P)] = R^{\Pi}_{\delta n}.
 \]

 Not necessarily the middle inequality is \(<\), despite the strict inequality for at least one \(P \) (because difference at single point may not influence their integral; but if \(P \) is discrete or continuous, then strict inequality will hold); however, the result is a contradiction with uniqueness.

- Connection to minimax rule: if \(\delta \) has constant risk and is admissible, then it is minimax.

 \[
 \text{Proof: Let} \; \delta_c \text{ be an admissible rule with constant risk} \; c, \text{ i.e., } r_{\delta_c}(P) = c, \forall P \in \mathcal{P} \\text{. Because} \; \delta_c \text{ is admissible, for any other rule} \; \delta, \text{ there exists} \; P_0 \in \mathcal{P}, \text{ such that} \]

 \[
 r_{\delta_c}(P_0) \leq r_{\delta}(P_0). \]

 Now we prove the claim by contradiction. Assume that \(\delta_c \) is not minimax, then there exists \(\delta \), such that

 \[
 \sup_{P \in \mathcal{P}} r_{\delta}(P) < \sup_{P \in \mathcal{P}} r_{\delta_c}(P). \]

 Since the supremum should be larger than or equal to the risk at any specific \(P \), we have

 \[
 r_{\delta}(P_0) \leq \sup_{P \in \mathcal{P}} r_{\delta}(P) \]

 To combine, we have

 \[
 c = r_{\delta_c}(P_0) \leq r_{\delta}(P_0) \leq \sup_{P \in \mathcal{P}} r_{\delta}(P) < \sup_{P \in \mathcal{P}} r_{\delta_c}(P) = c. \]

 A contradiction. Therefore, the assumption is false. \(\delta_c \) is minimax.

\[\Delta \]

James-Stein estimator.

\(X_i \sim \mathcal{N}(\theta_i, 1), i = 1, \ldots, p, \) to estimate \(\theta_i \) with quadratic loss \(l(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2 \).

The natural estimator is \(\hat{\theta}_i = X_i \). It is admissible for \(p = 1, 2 \), but not for \(p > 3 \); in that case, the James-Stein estimator

\[
\hat{\theta}^{JS}_i = \left(1 - \frac{p - 2}{\sum_{i=1}^{p} X_i^2}\right)^+ X_i
\]

has smaller risk. However, James-Stein estimator is not admissible either.

4.4 Unbiasedness

- \(\delta \) is unbiased with respect to a loss \(l \) if for every \(P \)

 \[
 r_{\delta}(P) = E_{X \sim P}[l(\delta(X), P)] \leq E_{X \sim P}[l(\delta(X), Q)], \text{ for all} \; Q. \]

 That is, \(E_{X \sim P}[l(\delta(X), Q)] \) is minimized at \(Q^* = P \).

- When \(P \) is parametrized, \(\delta \) is unbiased with respect to a loss \(l \) if for every \(\theta \)

 \[
 E_{X \sim P}[l(\delta(X), \theta)] \leq E_{X \sim P}[l(\delta(X), \tilde{\theta})], \text{ for all} \; \tilde{\theta}. \]
5 Lecture 5: Building Statistical Procedure I

5.1 Sufficient statistics

- A statistic is a function $T : \mathcal{X} \mapsto \mathbb{R}$.
- A statistic T is called **sufficient** for the model \mathcal{P}, if the conditional distribution of the data X given the value of $T(X) = T(x)$ does not depend on \mathcal{P}.

Sufficient statistic for binomial distribution.

Suppose $X \in \{0, 1\}^n$ with i.i.d. entries, where $P(X_i = 1) = p$, $\forall i$. Then $T(X) = X^T 1$ is sufficient:

$$
P(X|X^T 1 = s) = \frac{P(X, X^T 1 = s)}{P(X^T 1 = s)}
= \begin{cases}
\binom{n}{s} p^s (1-p)^{n-s} & \text{if } X^T 1 = s \\
0 & \text{if } X^T 1 \neq s
\end{cases}
$$

which does not depend on p.

- If $T(\cdot)$ is a sufficient statistic for \mathcal{P} and S is a one-to-one function, then $S(T(\cdot))$ is also a sufficient statistic for \mathcal{P}.
- A sufficient statistic which is a function of every other sufficient statistic is called **minimal sufficient**.
 - May not exist.
 - In the binomial example, $T(X) = X$ is not, but $T(X) = X^T 1$ is.

- Let Π be a prior distribution on \mathcal{P}. A statistic $T(\cdot)$ is called **Bayes sufficient** for Π, if the posterior distribution of P given $X = x$ is the same as the posterior distribution of P given $T(X) = T(x)$, for all x.
- (Kolmogorov) If $T(X)$ is sufficient for \mathcal{P}, it is Bayes sufficient for every Π.
 - The converse is also true, but not in general.

- (Rao-Blackwell) **Construct decision rule from sufficient statistics.** Suppose that the loss function is convex for fixed P:

$$
l(\alpha_1 a_1 + \alpha_2 a_2, P) \leq \alpha_1 l(a_1, P) + \alpha_2 l(a_2, P)
$$

where $\alpha_1, \alpha_2 \geq 0$ and $\alpha_1 + \alpha_2 = 1$. If $T(X)$ is sufficient for \mathcal{P} and δ is a decision rule, then the decision rule $\delta^*(X) = E_{\delta(X)}(\delta(X)|T(X))$ has uniformly smaller risk:

$$
r_{\delta^*}(P) \leq r_{\delta}(P), \forall P.
$$
Also, if δ is unbiased, so is δ^*.

Rao-Blackwell for binomial distribution. Suppose $X \in \{0,1\}^n$ with independent and entries, where $P(X_i = 1) = p, \forall i$. Then $T(X) = X^T 1$ is sufficient for p. Consider $\delta(X) = X_1$ (estimating p, unbiased). Then

$$
\delta^*(X) = E_{\delta(X)}[\delta(X)|T(X) = T(x)] \\
= E_{X_i}(X_1|X^T 1 = s) \\
= 0 \cdot P(X_1 = 0|X^T 1 = s) + 1 \cdot P(X_1|X^T 1 = s) \\
= P(X_1 = 1, X^T 1 = s) \\
= \frac{p \cdot \binom{n-1}{s-1} p^{s-1} (1-p)^{(n-1)-(s-1)}}{P(X^T 1 = s)} \\
= \frac{s}{n} = \frac{X^T 1}{n}.
$$

It is unbiased with respect to quadratic loss:

$$
E_{X \sim p}\left[\frac{X^T 1}{n}\right] = \frac{1}{n} \sum_{i=1}^{n} E(X_i) = p.
$$

Thus, its risk is the variance (see bias-variance decomposition):

$$
r_{\delta^*}(P) = Var\left(\frac{X^T 1}{n}\right) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \cdot n \cdot p(1-p) = \frac{p(1-p)}{n}.
$$

It has uniformly smaller risk than $\delta(X)$ for any p:

$$
r_{\delta^*}(P) = E_{X \sim p}\left[l\left(\frac{X^T 1}{n}, p\right)\right] \\
\leq E_{X \sim p}[l(X_1, p)] \\
= p \cdot (1-p)^2 + (1-p) \cdot (0-p)^2 \\
= p(1-p).
$$

• (Neyman-Savage) **Factorization criterion** for sufficient statistics. Suppose that X has a density (or mass). T is sufficient for θ iff there are g and h such that

$$
f(x|\theta) = g(T(x), \theta) h(x).
$$

- T is sufficient for θ if and only if the following is true:

$$
T(x) = T(y) \Rightarrow f(x|\theta) = c(x, y) f(y|\theta).
$$

- T is minimal sufficient for θ if and only if the following is true:

$$
T(x) = T(y) \Leftrightarrow f(x|\theta) = c(x, y) f(y|\theta).
$$
Neyman-Savage factorization criterion for binomial distribution.
Suppose $X \in \{0, 1\}^n$ with independent and entries, where $P(X_i = 1) = p, \forall i$. Then $T(X) = X^T 1$ is sufficient for p, since if $T(X) = T(x) = s$,

$$f(x|p) = p^s(1-p)^{n-s} = g(s,p)h(x),$$

where

$$g(s,p) = p^s(1-p)^{n-s}; h(x) = 1.$$

T is minimal. Let

$$f(x|p) = p^{\sum x_i}(1-p)^{n-\sum x_i}; f(y|p) = p^{\sum y_i}(1-p)^{n-\sum y_i}.$$

T is minimal because

$$T(x) = T(y) = s \iff f(x|p) = c(x,y)f(y|p),$$

where $c(x,y) = 1$.

Neyman-Savage factorization criterion for normal distribution.
Suppose $X_i \sim \mathcal{N}(\mu, \sigma^2), i = 1, \cdots, n$, σ^2 is known, to estimate μ. Then $T(X) = X^T 1$ is sufficient for μ, since if $T(X) = T(x) = s$,

$$f(x|p) = \frac{1}{\sigma^n(2\pi)^{n/2}} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right)$$

$$= \frac{1}{\sigma^n(2\pi)^{n/2}} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 \right) \cdot \exp \left(\frac{1}{2\sigma^2} (2\mu \sum_{i=1}^{n} x_i - n\mu^2) \right)$$

$$= h(x)g(s,p),$$

where

$$g(s,p) = \exp \left(\frac{1}{2\sigma^2} (2\mu s - n\mu^2) \right)$$

$$b(x) = \frac{1}{\sigma^n(2\pi)^{n/2}} \exp \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 \right).$$

T is minimal. To see this, set $c(x,y) = \exp \left(-\frac{1}{2\sigma^2} \sum (x_i^2 - y_i^2) \right)$.

5.2 Complete statistics

- Assume a parametric model $\{P_\theta\}$ and the quadratic loss function.
- A statistic S is complete if for every function g, independent of θ,

$$E_{X \sim P_\theta} [g(S(X))] = 0, \forall \theta \Rightarrow \Pr_{X \sim P_\theta} [g(S(X)) = 0] = 1, \forall \theta.$$

Roughly speaking, if the expectation with respect to all θ is 0, then g is identically zero.

Complete statistic for binomial distribution.
Suppose $X \in \{0, 1\}^n$ with independent and entries, where $P(X_i = 1) = p, \forall i$. Then $T(X) = X^T 1$ is complete for p: if

$$E[g(T(X))] = \sum_{k=0}^{n} g(k) \Pr(T(X) = k) = \sum_{k=0}^{n} g(k) \binom{n}{k} p^k (1-p)^{n-k},$$

equals to zero for all $p \in [0, 1]$, then $g(k) = 0$ for all k, because $E[g(T(X))]$ is a polynomial of p.
(Lehmann-Scheffé) Any unbiased estimator based (only) on a complete, sufficient statistic is minimum-variance unbiased estimator. That is, it has the smallest variance (= MSE for unbiased), for all \(\theta \), among all unbiased estimators of \(\theta \).

5.3 Cramér-Rao bound

• In this part we only consider regular models, whose support \(\{ x \mid f(x; \theta) > 0 \} \) does not depend on \(\theta \). Also assumed is that we may interchange integration and differentiation.

• The score function is

\[
 s(x; \theta) = \frac{\partial}{\partial \theta} \log f(x; \theta) = \frac{\partial f(x; \theta)}{f(x; \theta)} .
\]

- Note that

\[
 E_{X \sim P_{\theta}}[s(X; \theta)] = \int \frac{\partial f(x; \theta)}{f(x; \theta)} f(x; \theta) dx
 = \frac{\partial}{\partial \theta} f(x; \theta) dx
 = \frac{\partial}{\partial \theta} \int f(x; \theta) dx
 = \frac{\partial}{\partial \theta} 1 = 0 .
\]

- When \(X \) consists of independent r.v.s then

\[
 s(x; \theta) = \frac{\partial}{\partial \theta} \log f(x; \theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log g(x_i; \theta) = \sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log g(x_i; \theta)
\]

• The Fisher information is defined by

\[
 I(\theta) = Var_{X \sim P_{\theta}}[s(X; \theta)]
 = E_{X \sim P_{\theta}}[s^2(X; \theta)]
 = \int \left(\frac{\partial f(x; \theta)}{f(x; \theta)} \right)^2 f(x; \theta) dx
 = \int \frac{(\partial f(x; \theta))^2}{f(x; \theta)} dx
\]

- Another way to compute \(I(\theta) \) via second derivative. First note that

\[
 \frac{\partial^2}{\partial^2 \theta} \log f = \frac{\partial}{\partial \theta} \frac{f'}{f} = \frac{f'' - f' f'}{f^2} .
\]

Also,

\[
 E_{X \sim P_{\theta}} \left(\frac{f''}{f} \right) = \int \frac{f''}{f} dx = \int f'' dx = 0 \text{ as } \int f dx = 1 .
\]

To combine, we have

\[
 E \left(-\frac{\partial^2}{\partial^2 \theta} \log f \right) = E \left(\frac{f''' - f' f''}{f^2} \right)
 = E \left(\frac{f'}{f} \right)^2 - E \left(\frac{f''}{f} \right)
 = E(s^2) - 0 = I(\theta)
\]

- When \(X \) consists of independent r.v.s then

\[
 I(\theta) = Var_{X \sim P_{\theta}}[s(X; \theta)]
 = Var_{X \sim P_{\theta}} \left[\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log g(x_i; \theta) \right]
 = \sum_{i=1}^{n} Var_{X \sim P_{\theta}} \left[\frac{\partial}{\partial \theta} \log g(x_i; \theta) \right]
 = \sum_{i=1}^{n} \int \frac{(\partial g(x_i; \theta))^2}{g(x_i; \theta)} dx_i
\]
If all \(g_i \) are identical, then
\[
I(\theta) = n \int \left(\frac{\hat{g} g(y; \theta)}{g(y; \theta)} \right)^2 dy
\]

- **Cramér-Rao inequality** provides a lower bound on the variance of any statistic \(U(X) \). Consider the covariance of \(s(X; \theta) \) and \(U(X) \). By Cauchy-Schwartz inequality
\[
[Cov_{X \sim P_\theta}(s(X; \theta), U(X))]^2 \leq \text{Var}_{X \sim P_\theta}(s(X; \theta)) \cdot \text{Var}_{X \sim P_\theta}(U(X))
\]
\[
= I(\theta) \cdot \text{Var}_{X \sim P_\theta}(U(X))
\]

To compute \(\text{Cov}_{X \sim P_\theta}(s(X; \theta), U(X)) \) (note Eq.(5.1)):
\[
\text{Cov}_{X \sim P_\theta}(s(X; \theta), U(X)) = E_{X \sim P_\theta}[s(X; \theta)U(X)] - E_{X \sim P_\theta}(s(X; \theta))E_{X \sim P_\theta}[U(X)]
\]
\[
= E_{X \sim P_\theta}[s(X; \theta)U(X)]
\]
\[
= \int \frac{\hat{f}}{f(x; \theta)} U(x)f(x; \theta)dx
\]
\[
= \int \frac{\hat{f}}{\theta} f(x; \theta)U(x)dx
\]
\[
= \frac{\hat{g}}{\theta} \int U(x)f(x; \theta)dx = \frac{\hat{g}}{\theta} E_{X \sim P_\theta}[U(X)].
\]

Therefore, **Cramér-Rao lower bound** gives
\[
\text{Var}_{X \sim P_\theta}(U(X)) \geq \left(\frac{\hat{g} E_{X \sim P_\theta}[U(X)]}{I(\theta)} \right)^2
\]

- When \(U(X) \) is unbiased w.r.t. quadratic loss:
\[
E_{X \sim P_\theta}(U(X)) = \theta.
\]

Because \(\frac{\hat{g}}{\theta} E_{X \sim P_\theta}[U(X)] = \frac{\hat{g}}{\theta} = 1 \), we have
\[
\text{Var}_{X \sim P_\theta}(U(X)) \geq \frac{1}{I(\theta)}.
\]

\[\Box\]

Cramér-Rao lower bound for binomial distribution.

Suppose \(X \in \{0,1\}^n \) with independent and entries, where \(P(X_i = 1) = p, \forall i. \)
\(g(x_i; p) = p^x_i (1-p)^{1-x_i} \). To compute the Fisher information
\[
I(p) = n \times E_X, \left[\frac{\partial}{\partial \theta} \log g(x_i; p) \right]^2
\]
\[
= n \cdot E_X \left[\left(\frac{x_i}{p} - 1 - x_i \right)^2 \right]
\]
\[
= \frac{n}{p^2(1-p)^2} E_X[(x_i - p)^2]
\]
\[
= \frac{n}{p^2(1-p)^2} \text{Var}_X(x_i) = \frac{n}{p(1-p)}.
\]

Therefore, any unbiased estimator of \(p \) must have a variance (which equals its mean square error) greater than
\[
\frac{1}{I(p)} = \frac{p(1-p)}{n}.
\]

Now let’s compute the variance (also MSE) of an unbiased estimator \(T(X) = \frac{\sum x_i}{n} \):
\[
\text{Var}_X(T(X)) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}_X(x_i) = \frac{p(1-p)}{n}.
\]

Therefore, this estimator makes the Cramér-Rao lower bound tight.

- When Cramér-Rao an equality? The inequality is the result of Cauchy-Schwartz.

Therefore, if the score function has the form
\[
s(x; \theta) = \frac{\partial}{\partial \theta} \log f(x; \theta) = c(\theta) + d(\theta)U(x),
\]
equality will hold. Then
\[f(x; \theta) = \exp(\eta(\theta)U(X) - a(\theta) + g(x)). \]

That is, exponential family preserves equality in Cramér-Rao. For the exponential family, if we define \(\eta = \eta(\theta) \) as a new parameter, then \(a(\theta) = b(\eta) \). For the density, we have
\[\int f(x; \eta)dx = \int \exp(\eta U(X) - b(\eta) + g(x))dx = 1. \]

Differentiating in \(\eta \) on both sides (assuming we can interchange integration and differentiation), we have
\[
0 = \int \exp(\eta U(X) - b(\eta) + g(x))(U(x) - b'(\eta))dx \\
= \int U(x) \exp(\eta U(X) - b(\eta) + g(x))dx - b'(\eta) \exp(\eta U(X) - b(\eta) + g(x))dx \\
= E_X(U(X)) - b'(\eta).
\]

Therefore, we have \(E_X(U(x)) = b'(\eta) \). Similarly, we have \(Var_X(U(X)) = b''(\eta) \).

Cramér-Rao for exponential distribution.

Exponential distribution is specified by
\[
f(x; \lambda) = \begin{cases}
\lambda e^{-\lambda x} & \text{when } x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

where \(\lambda > 0 \) is the parameter. Note that it can be also expressed as
\[
f(x; \theta) = \begin{cases}
\frac{1}{\theta} e^{\frac{1}{\theta} x} & \text{when } x \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

for \(\theta > 0 \). With this new parametrization, we can see that \(U(X) = X \) is unbiased for \(\theta \), with least variance (MSE) one can have because of Cramér-Rao inequality.

Note that if we use old parametrization with \(\lambda \), then \(U(X) = -X \) and
\[
\lambda e^{-\lambda x} = e^{-\lambda x - (-\ln \lambda)}.
\]

Thus \(b'(\lambda) = \frac{1}{\lambda} \), so is \(E_X(U(X)) = E_X(-X) = -E_X(X) = \frac{1}{\lambda} \).

(Side note: having an estimator, \(\hat{\theta} \) of \(\theta \), with some properties does not mean that \(\hat{\theta} \) is the estimator of \(g(\theta) \) with the same properties (unless \(g \) is very simple - say, a linear function). For instance, an unbiased estimator for \(\sigma^2 \) may not be unbiased for \(\sigma \)).

Cramér-Rao for binomial distribution: revisited.

Suppose \(X \in \{0,1\}^n \) with independent and entries, where \(P(X_i = 1) = p, \forall i \).
\[g(x_i; p) = p^{x_i}(1-p)^{1-x_i}. \]

The joint distribution is
\[
f(x; p) = p^\sum x_i (1-p)^{n-\sum x_i} \\
= \left(\frac{p}{1-p} \right)^{\sum x_i} (1-p)^n \\
= \exp \left(\ln \frac{p}{1-p} \sum x_i + n \ln(1-p) \right).
\]

Let \(\eta = \ln \frac{p}{1-p} \), we have
\[
f(x; p) = \exp \left(\eta \sum x_i - n \ln(1+e^\eta) \right)
\]

Therefore, it is also a member of exponential family. As a result, Cramér-Rao bound is sharp (as we already shown).
6 Lecture 6: Building Statistical Procedure II

6.1 Substitution principle

- Let \(x = (x_1, x_2, \ldots, x_n) \), which is a realization of \(X = (X_1, X_2, \ldots, X_n) \), where \(X_i \) is a r.v. with distribution \(P \). We want to estimate \(\theta(P) \), some characteristic quantity of \(P \). Typically, \(X_i \) are independent, but it is not absolutely necessary; some permutational invariance (exchangeability) is enough.

- An empirical distribution by \(x \) is the discrete distribution that assigns probability \(\frac{1}{n} \) to every point \(x_i \), denoted \(P_x \):

\[
P_x(E) = \frac{1}{n} \text{card}\{i|x_i \in E\}.
\]

- The substitution principle states that to estimate \(\theta(P) \), replace \(P \) by \(P_x \).

Moment estimation.

Suppose we want to estimate the \(k \)th moment

\[
\theta(P) = \int z^k dP(z), \quad k = 1, 2, \ldots.
\]

The resultant estimator with substitution principle is

\[
\hat{\theta}(P_x) = \int z^k dP_x(z) = \frac{1}{n} \sum_{i=1}^{n} x_i^k.
\]

Variance estimation.

Suppose we want to estimate the variance

\[
\theta(P) = \int \left(z - \int udP(u) \right)^2 dP(z).
\]

The resultant estimator with substitution principle is

\[
\hat{\theta}(P_x) = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \frac{1}{n} \sum_{i=1}^{n} x_i \right)^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2.
\]
Linear regression.

Consider the linear regression model:

\[Y = \alpha X + \beta + U, \quad (6.1) \]

where \(X \) is input variable and \(Y \) is output variable (jointly with \(U \) from some distribution), \(\alpha, \beta \) are the parameters of the model, and \(U \) is an error term independent of \(X \) (so they are also uncorrelated, \(E(XU) = 0 \)) with \(E(U) = 0 \). Taking expectation on both sides, we have

\[E(Y) = \alpha E(X) + \beta. \quad (6.2) \]

Moreover, we can multiply Eq.(6.1) by \(X \), then take expectation:

\[E(XY) = \alpha E(X^2) + \beta E(X). \quad (6.3) \]

With Eq.(6.2) and Eq.(6.3), we can solve \(\alpha, \beta \) as

\[
\alpha = \frac{E(XY) - E(X)E(Y)}{E(X^2) - (E(X))^2} = \frac{Cov(X,Y)}{Var(X)} \\
\beta = E(Y) - \alpha E(X).
\]

By substitution principle, all expectations (variance/covariance) can be computed from sample \(\{(x_1,y_1), (x_2,y_2), \cdots, (x_n,y_n)\} \):

\[
\hat{\alpha} = \frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n}(x_i - \bar{x})^2} \\
\hat{\beta} = \bar{y} - \hat{\alpha}\bar{x}.
\]

Quantile estimation.

For \(\tau \in (0,1) \), suppose we are going to estimate the quantile \(q_\tau \) such that

\[P((-\infty, q_\tau]) \geq \tau; P([q_\tau, +\infty)) \geq 1 - \tau. \]

We can see quantile in a different way. Define “check function” as

\[
\rho_\tau(z) = \begin{cases}
|z| + (2\tau - 1)z & \text{for } z > 0 \\
2(\tau - 1)z & \text{for } z \leq 0
\end{cases}
\]

Then

\[q_\tau = \arg\min_c E[\rho_\tau(Z - c)] = \int \rho_\tau(z - c)dP(z). \]

Therefore, given \(\tau \in (0,1) \), to estimate \(q_\tau \), find the minimizer \(c^* \) of

\[\int \rho_\tau(z - c)dP(z) = \frac{1}{n} \sum_{i=1}^{n} \rho_\tau(x_i - c). \]

For instance, if \(\tau = 0.5 \), we are trying to estimate the median, then

\[
\text{card}\{i|x_i \leq c^*\} \geq \frac{n}{2}; \text{card}\{i|x_i \geq c^*\} \geq \frac{n}{2}.
\]

That is, \(c^* \) is just the sample median.

- Can be used to estimate non-parametric model. If we want to estimate the accumulative distribution \(F(z) = P((-\infty, z]) \), by substitution principle, we have

\[F_n(z) = \mathbb{P}_n(z) = \frac{1}{n} \text{card}\{i|x_i \leq z\}, \]

which is essentially a step function.

\[- E(\mathbb{P}_n(z)) = F(z). \]

\[- \text{Var}(\mathbb{P}_n(z)) = \frac{F(z)(1-F(z))}{n}. \]
• F(z) → F(z) as n → ∞ (in probability, almost surely).
• sup_z |F(z) − F(z)| → 0 as n → ∞ (in probability, almost surely).

6.2 Consistency

• If the estimator \(\hat{\theta}_n \) converges to the target/estimated quantity \(\theta \) as \(n \to \infty \), where convergence is determined by

 – Convergence in probability
 \[\Pr(|\hat{\theta} − \theta| ≥ \epsilon) → 0 \text{ for every } \epsilon > 0. \]

 – Almost surely (with probability 1) convergence
 \[\Pr(|\hat{\theta} − \theta| → 0) = 1. \]

 – Convergence in some mean sense
 \[E(|\hat{\theta} − \theta|^p) → 0. \]

then we say \(\hat{\theta}_n \) is consistent.

\[\text{Consistent estimator for mean and variance.} \]
Assume that \(X_i \) are iid r.v.s and the mean \(\mu = E(X_i) \) exists. Then \(\bar{X}_n \) is a consistent estimator for \(\mu \). By a law of large numbers (have different versions),

\[\bar{X}_n \xrightarrow{p} \mu \]
as \(n \to \infty \).

Now further assume that the variance \(\sigma^2 = \text{Var}(X_i) \) exists. Consider the quantity

\[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i − \mu) = \sqrt{n}(\bar{X}_n − \mu). \]

A central limit theorem (again, many versions) states that

\[\frac{\bar{X}_n − E(\bar{X}_n)}{\sqrt{\text{Var}(\bar{X}_n)}} = \frac{\bar{X}_n − \mu}{\sqrt{\frac{\sigma^2}{n}}} \]

converges in distribution to the standard normal distribution \(N(0, 1) \). It follows that \(\sqrt{n}(\bar{X}_n − \mu) \) converges in distribution to \(N(0, \sigma^2) \).

6.3 Asymptotic normality

• If the estimator, \(\hat{\theta}_n \), of \(\theta \), has the property that \(\sqrt{n}(\hat{\theta}_n − \theta) \) converges in distribution to \(N(0, \sigma^2) \), then we call that estimator asymptotically normal with asymptotic variance \(\sigma^2 \).

 – The smaller \(\sigma^2 \) is, the better (more accurate).

• To compare two asymptotically normal estimator \(\hat{\theta} \) and \(\tilde{\theta} \), with

\[\sqrt{n}(\hat{\theta} − \theta) \overset{d}{\to} Z \sim N(0, \sigma^2); \quad \sqrt{n}(\tilde{\theta} − \theta) \overset{d}{\to} Z \sim N(0, \tilde{\sigma}^2). \]

The asymptotic relative efficiency (ARE) of \(\tilde{\theta} \) to \(\hat{\theta} \) is defined as

\[\text{ARE}(\tilde{\theta}, \hat{\theta}) = \frac{\sigma^2}{\tilde{\sigma}^2}. \]
ARE of sample mean versus sample median.

Assume that \(X_i \) are iid r.v.s whose mean and median are both \(\mu \).

- Suppose that the variance of \(X_i \) is \(\sigma^2 \); from the central limit theorem, we know that \(\sigma^2 \) is the asymptotic variance of the sample mean.

- Suppose that the common density, \(f \), of \(X_i \) exists and is positive at \(\mu \). For the sample median, Kolmogorov proved that under these assumptions, it is asymptotically normal with the asymptotic variance \(\frac{1}{4f(\mu)^2} \).

For instance, if the distribution of \(X_i \) is normal, then the asymptotic variance of sample mean is \(\sigma^2 \), while the asymptotic variance of sample median is

\[
\frac{1}{4f(\mu)^2} = \frac{\pi}{2} \sigma^2.
\]

Therefore,

\[
ARE(\mu_{\text{median}}, \mu_{\text{mean}}) = \frac{\sigma^2}{\frac{\pi}{2} \sigma^2} = \frac{2}{\pi} \approx 0.6366,
\]

which means sample mean \(\mu_{\text{mean}} \) is more efficient.

For any unimodal \(f \) (only has one mode), the ratio is \(\geq 1/3 \) and there are \(f \) with \(> 1 \), i.e., the sample median is more efficient (\(t \) distribution with 3 or 4 degrees of freedom, for instances).

6.4 Maximum likelihood estimate

- **Likelihood**
 \[
 L(\theta) = f(x; \theta).
 \]
 If we have independent r.v.s, then
 \[
 L(\theta) = f(x; \theta) = \prod_{i=1}^{n} g(x_i; \theta).
 \]

- **Maximum likelihood estimate** is given by
 \[
 \hat{\theta} = \text{argmax}_\theta L(\theta).
 \]
 Usually take the logarithm when we have independent r.v.s.

- Suppose that \(\hat{\theta}_n \) are maximum likelihood estimators of \(\theta \), from iid sample where the distribution of \(X_i \) is specified by \(\theta \). Then typically,
 - Maximum likelihood estimators are consistent (in probability): \(\hat{\theta}_n \xrightarrow{P} \theta \).
 - They are asymptotically normal, and asymptotically efficient:
 \[
 \sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} Z \sim N \left(0, \frac{1}{I(\theta)} \right),
 \]
 where \(I(\theta) \) is the Fisher information for one observation from the family parametrized by \(\theta \). (Note that the Fisher information for the whole sample \(X_1, X_2, \ldots, X_n \) is \(nI(\theta) \).)

7 Lecture 7: Estimating the precision of estimates

7.1 Bootstrap

- We care about how accurate our prediction is.
Standard error: a canonical example.

Consider an example where \(X_1, \ldots, X_n \) are i.i.d. r.v.s with the same distribution \(P \) with mean \(\mu \) and variance \(\sigma^2 \). We are estimating the mean \(\mu \) by \(\hat{X} \). It is known that \(\text{Var}(\hat{X}) = \frac{\sigma^2}{n} \). So the standard error of sample mean is given by

\[
se_{X \sim P} (\hat{X}) = \frac{\sigma}{\sqrt{n}}.
\]

However, we don’t know \(\sigma \), so we can estimate this by substitution principle, we have

\[
se_{X \sim P} (\hat{X}) = \frac{1}{\sqrt{n}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{X})^2}.
\]

(Sometimes, \(n - 1 \) is preferable.)

Unlike the example above, standard error (standard deviation) of estimator \(\hat{\theta} \) may not be calculated in closed form. So we can estimate its standard error via bootstrap.

- Generate \(B \) bootstrap samples of size \(n \) (sampling from \(P_x \) with replacement.)
- We estimate \(se_{P_x} (\hat{\theta}) \) by the standard derivative of \(\hat{\theta}^* \), the estimation from bootstrap sample:

\[
se_{P_x} (\hat{\theta}) \approx \sqrt{\frac{1}{B} \sum_{i=1}^{B} (\hat{\theta}_i^* - \frac{1}{B} \sum_{i=1}^{B} \hat{\theta}_i^*)^2}.
\]

(7.1)

- In theory, there are \(\binom{2n-1}{n} \) distinct bootstrap samples of size \(n \) (place \(n - 1 \) boards in between \(n \) balls). However, their probabilities are different. The probability of a bootstrap sample in which \(x_i \) appears \(k_i \) times, with \(k_1 > 0 \) and \(k_1 + k_2 + \cdots + k_n = n \) is

\[
\frac{n!}{k_1!k_2!\cdots k_n!}.
\]

The most probable sample is the one with \(k_i = 1 \) - the original one.

• Bias correction via bootstrap.
- The bias of \(\hat{\theta} \) is

\[
b_{X \sim P} (\hat{\theta}) = E_{X \sim P} (\hat{\theta}) - \theta.
\]

If it is known, then we can use

\[
\tilde{\theta} = \hat{\theta} - b_{X \sim P} (\hat{\theta})
\]

as a “corrected” estimate: \(E_{X \sim P} (\tilde{\theta}) = E_{X \sim P} (\hat{\theta}) - E_{X \sim P} (b_{X \sim P} (\hat{\theta})) = [\theta + b_{X \sim P} (\hat{\theta})] - b_{X \sim P} (\hat{\theta}) = \theta \).
- When \(b_{X \sim P} (\hat{\theta}) \) is unknown, we estimate it by

\[
b_{X \sim P_x} (\hat{\theta}) = E_{X \sim P_x} (\hat{\theta}) - \tilde{\theta},
\]

where \(E_{X \sim P_x} (\hat{\theta}) \) can be estimated by bootstrap \(\frac{1}{B} \sum_{i=1}^{B} \hat{\theta}_i^* \). That is, we can correct bias by

\[
\tilde{\theta} = 2\hat{\theta} - E_{X \sim P_x} (\hat{\theta}).
\]

• Parametric bootstrap
- Non-parametric bootstrap is to substitute \(P \) by \(P_x \).
- Parametric bootstrap assumes that the distribution \(P \) comes from a model \(\{P_\theta\}_{\theta \in \Theta} \), and substitutes \(P_\theta \) for \(P \). In Monte Carlo approximation, it means that we do not draw random samples from \(P_x \), but from \(P_\theta \) instead.
7.2 Delta method

• Suppose we have an asymptotic normality theorem for \(\hat{\theta} = \hat{\theta}_n \) (for example, CLT with \(\hat{\theta} = X \)):

\[
\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \sigma^2),
\]

then we have

\[
\hat{\theta}_n \sim N(\theta, \frac{\sigma^2}{n}).
\]

where \(\sim \) is “approximately distributed as”. \(\sigma \) can be known or estimated, then we can use \(\sigma/\sqrt{n} \) as standard error of \(\hat{\theta}_n \).

• Sometimes we care about \(g(\theta) \) instead of \(\theta \) itself. Then we may estimate \(g(\theta) \) by \(g(\hat{\theta}) \) (MLE works for instance). If \(g \) is differentiable (which implies continuous) at \(\theta \) and \(g'(\theta) \neq 0 \), then

\[
\sqrt{n} \frac{g(\hat{\theta}_n) - g(\theta)}{\sigma |g'(\theta)|} \xrightarrow{d} N(0, 1),
\]

and then

\[
g(\hat{\theta}_n) \sim N \left(g(\theta), \frac{\sigma^2 |g'(\theta)|^2}{n} \right),
\]

which implies the standard error of \(g(\hat{\theta}_n) \) is \(\frac{\sigma |g'(\theta)|}{\sqrt{n}} \).

• \(\theta \) is unknown, so \(g'(\theta) \) is also unknown. If \(\hat{\theta}_n \) is consistent (\(\hat{\theta} \xrightarrow{p} \theta \)), and \(g' \) is continuous (at \(\theta \)), then we have (by Slutsky’s Theorem)

\[
\sqrt{n} \frac{g(\hat{\theta}_n) - g(\theta)}{\sigma |g'(\theta)|} \xrightarrow{d} N(0, 1),
\]

and then

\[
g(\hat{\theta}_n) \sim N \left(g(\theta), \frac{\sigma^2 |g'(\hat{\theta})|^2}{n} \right).
\]

8 Lecture 8: Confidence interval

8.1 Bayesian confidence/probability intervals

• Bayesian approach: everything is in posterior distribution.

• Percentile method.

 – Take two quantiles, \(q_\beta \) and \(q_{1-\gamma} \), set \(\beta, \gamma \) such that

\[
\Pr(q_\beta \leq \theta \leq q_{1-\gamma}) = 1 - \alpha.
\]

Usually, \(\beta = \gamma = \alpha/2 \).

 – HPD (highest posterior density). With posterior density \(f_{\theta|x}(u) \), find \(c \) such that the region is \(E = \{u | f_{\theta|x}(u) \geq c \} \), where

\[
\Pr(\theta \in E) = \int_{E} f_{\theta|x}(u) du = 1 - \alpha \quad \text{(or} \geq 1 - \alpha \text{if discrete}).
\]

It is the shortest interval if \(f_{\theta|x}(u) \) is unimodal.

8.2 General confidence intervals

• Main idea: find the distribution of the estimates.
Normal observations: unknown μ, known σ.
Consider an example where X_1, \cdots, X_n are i.i.d. r.v.s with $N(\mu, \sigma^2)$. We are estimating the mean μ by \bar{X}. We know that $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$, so $\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$. Then
\[
1 - \alpha = \Pr\left[\left|\frac{\bar{X} - \mu}{\sigma/\sqrt{n}}\right| \leq z_{\alpha/2}\right] = \Pr\left[\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2} + \frac{\sigma}{\sqrt{n}} \theta\right],
\]
where $z_{\alpha/2}$ is the $\alpha/2$-quantile of standard normal $N(0,1)$.

Generally, if θ is (approximately) $N(\theta, (se(\theta))^2)$, then
\[
\Pr\left[\hat{\theta} - se(\hat{\theta})z_{\alpha/2} \leq \theta \leq \hat{\theta} + se(\hat{\theta})z_{\alpha/2}\right] = 1 - \alpha.
\]

- **Bootstrap confidence intervals** (normal case). If $se(\hat{\theta})$ is unknown (σ is unknown), then we can estimate it via bootstrap (7.1). This works if θ is (approximately) normal.

- **Bootstrap “percentile” confidence intervals** (normal case). We can estimate the end points $\hat{\theta} \pm se(\hat{\theta})z_{\alpha/2}$ directly by bootstrap estimates $\hat{\theta}_{\alpha/2}^*, \hat{\theta}_{1-\alpha/2}^*$. Recall that we have B bootstrap sample estimates $\hat{\theta}^*$. $\hat{\theta}_{\alpha/2}^*$ corresponds to the $\alpha/2$ quantile of these B estimates.

- **Bootstrap pivotal confidence intervals**. We can estimate the $\alpha/2$ and $1-\alpha/2$ quantiles ($q_{\alpha/2}$ and $q_{1-\alpha/2}$) of $\theta - \hat{\theta}$, by $\hat{\theta}_{\alpha/2}^* - \hat{\theta}, \hat{\theta}_{1-\alpha/2}^* - \hat{\theta}$. Then
\[
1 - \alpha = \Pr[q_{\alpha/2} \leq \theta \leq q_{1-\alpha/2}] = \Pr[\hat{\theta} - q_{1-\alpha/2} \leq \theta \leq \hat{\theta} - q_{\alpha/2}] \approx \Pr[\hat{\theta} - (\hat{\theta}_{1-\alpha/2}^* - \hat{\theta}) \leq \theta \leq \hat{\theta} - (\hat{\theta}_{\alpha/2}^* - \hat{\theta})] = \Pr[2\hat{\theta} - \hat{\theta}_{1-\alpha/2}^* \leq \theta \leq 2\hat{\theta} - \hat{\theta}_{\alpha/2}^*]
\]

Normal observations: unknown μ, unknown σ.
Consider an example where X_1, \cdots, X_n are i.i.d. r.v.s with $N(\mu, \sigma^2)$. We are estimating the mean μ by \bar{X}. Let
\[
s^2 = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n}(X_i - \bar{X})^2}.
\]
We know that
\[
Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)
\]
\[
\chi^2 = \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)
\]
\[
t = \frac{Z}{\sqrt{\chi^2/(n-1)}} = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \sqrt{n} \frac{\bar{X} - \mu}{s} \sim \frac{N(0,1)}{\sqrt{\chi^2/(n-1)}} = t(n-1),
\]
since Z and χ^2 are independent. Then
\[
1 - \alpha = \Pr\left[|t| \leq t_{\alpha/2}(n-1)\right] = \Pr\left[\frac{\bar{X} - s}{\sqrt{n}}t_{\alpha/2}(n-1) \leq \mu \leq \frac{\bar{X} + s}{\sqrt{n}}t_{\alpha/2}(n-1)\right],
\]
where $t_{\alpha/2}(n-1)$ is the $\alpha/2$-quantile of $t(n-1)$, t distribution with $(n-1)$ degree of freedom.
9 Lecture 9: Hypothesis testing

9.1 Setup

- Null hypothesis set \(\mathcal{P}_0 \); alternative hypothesis set \(\mathcal{P}_A \). (\(\Theta_0 \) and \(\Theta_A \) if parametric).
- \(\mathcal{P}_0 \cap \mathcal{P}_0 = \emptyset \); \(\mathcal{P}_0 \cup \mathcal{P}_0 = \mathcal{P} \).
- Rejection region \(\mathcal{R} \subseteq \mathcal{X} \): if data \(\mathcal{X} \) falls into \(\mathcal{R} \), then reject null hypothesis; accept null hypothesis if \(\mathcal{X} \notin \mathcal{X} \setminus \mathcal{R} \).
- Errors

<table>
<thead>
<tr>
<th>Truth</th>
<th>Decision</th>
<th>Accept (\mathcal{H}_0)</th>
<th>Reject (\mathcal{H}_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{H}_0)</td>
<td>Correct</td>
<td>Type I Error</td>
<td></td>
</tr>
<tr>
<td>(\mathcal{H}_A)</td>
<td>Type II Error</td>
<td>Correct</td>
<td></td>
</tr>
</tbody>
</table>

9.2 Testing evaluation

- Power function, level, size
 - The power function is defined as
 \[
 \beta(P) = \Pr(X \in \mathcal{R}),
 \]
 where \(X \sim P \) and \(\mathcal{R} \) is calculated based on the testing method. Note that
 \[
 \beta(P) = \begin{cases}
 \Pr(\text{Type I error}) & \text{if } P \in \mathcal{P}_0 \\
 1 - \Pr(\text{Type II error}) & \text{if } P \in \mathcal{P}_A
 \end{cases}
 \]
 We say that a test is powerful if \(\beta(P) \) is “large” for \(P \in \mathcal{P}_A \).
 - Given \(0 \leq \alpha \leq 1 \), a test is of (significance) level \(\alpha \) if \(\sup_{P \in \mathcal{P}_0} \beta(P) \leq \alpha \).
 - Given \(0 \leq \alpha \leq 1 \), a test is of size \(\alpha \) if \(\sup_{P \in \mathcal{P}_0} \beta(P) = \alpha \).
- Most powerful test. A test at level \(\alpha \) that has higher or equal power than all other tests at level \(\alpha \) for all \(P \in \mathcal{P}_A \) is called uniformly most powerful at level \(\alpha \).
- Neyman-Pearson lemma. To test one simple hypothesis \(\mathcal{P}_0 \) against one simple alternative hypothesis \(\mathcal{P}_A \). Assuming they can be represented by density \(f_0(x) \), \(f_A(x) \), respectively. On the basis of observed \(x \), the (uniformly) most powerful test exists and is
 \[
 \text{reject } \mathcal{H}_0 \text{ if } \frac{f_A(x)}{f_0(x)} \geq c,
 \]
 where \(c \) is set so that
 \[
 \mathcal{P}_0 [x \in \mathcal{R}] = \mathcal{P}_0 \left[\frac{f_A(x)}{f_0(x)} \geq c \right] = \alpha.
 \]
 - Randomized version:
 \[
 \text{reject } \mathcal{H}_0 \text{ if } \frac{f_A(x)}{f_0(x)} > c,
 \]
 \[
 \text{reject } \mathcal{H}_0 \text{ with probability } d \text{ if } \frac{f_A(x)}{f_0(x)} = c,
 \]
 \[
 \text{accept } \mathcal{H}_0 \text{ if } \frac{f_A(x)}{f_0(x)} < c,
 \]
 where \(c \) and \(d \in [0,1] \) are set so that
 \[
 \mathcal{P}_0 [x \in \mathcal{R}] = \mathcal{P}_0 \left[\frac{f_A(x)}{f_0(x)} > c \right] + \mathcal{P}_0 \left[\frac{f_A(x)}{f_0(x)} = c \right] \cdot d = \alpha.
 \]
9.3 \textit{p-value}

- Suppose we have nested rejection regions \(R_{\alpha_1} \subseteq R_{\alpha_2} \) whenever \(\alpha_1 \leq \alpha_2 \). Given the observed data \(x \), the observed significance level (or p-value) is defined as \(p(x) = \inf\{\alpha | x \in R_\alpha\} \).

10 Lecture 10: Multiple testing

Suppose we have \(K \) tests, \(k = 1, 2, \cdots, K \); testing \(H_{0k} : \mathcal{P}_{0k} \) against \(H_{Ak} : \mathcal{P}_{Ak} \) with rejection region \(R_k \).

10.1 Union-intersection test

- Testing \(H_0 : \mathcal{P}_0 = \bigcap_k \mathcal{P}_{0k} \) against \(H_A : \mathcal{P}_A = (\bigcap_k \mathcal{P}_{0k})^c = \bigcup_k \mathcal{P}_{Ak} \).
- Rejection region is \(R = \bigcup_k R_k \).
- Union bound: \(P_0(x \in R) = P_0(x \in \bigcup_k R_k) \leq \sum_k P_0(x \in R_k) \).

10.2 Intersection-union test

- Testing \(H_0 : \mathcal{P}_0 = \bigcup_k \mathcal{P}_{0k} \) against \(H_A : \mathcal{P}_A = (\bigcup_k \mathcal{P}_{0k})^c = \bigcap_k \mathcal{P}_{Ak} \).
- Rejection region is \(R = \bigcap_k R_k \).

10.3 Controlling family-wise error rate

\textbf{Family-wise error rate (FWER)}: the probability of committing \textit{at least} one error of the first kind. We want to bound it as

\[\text{FWER} = P_0 \left(X \in \bigcup_{k=1}^K R_k \right) \leq \alpha. \]

- \textbf{Bonferroni method}: reject all null hypotheses whose \(p \)-value \(p_k \) is smaller than \(\alpha/K \).

 By union bound,

 \[\text{FWER} = P_0(x \in R) = P_0 \left(X \in \bigcup_{k=1}^K R_k \right) \leq \sum_{k=1}^K P_0(x \in R_{k-1}) = \sum_{k=1}^K \frac{\alpha}{K} = \alpha. \]

- \textbf{Holm method}.
Order p-values as \(p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(K)} \).

- If \(\frac{\alpha}{K} \leq p_{(1)} \), then accept all null hypotheses and stop; otherwise reject \(H_{0(1)} \) and continue.
- If \(\frac{\alpha}{K-1} \leq p_{(2)} \), then accept all remaining null hypotheses and stop; otherwise reject \(H_{0(2)} \) and continue.
- \(\cdots \)
- If \(\frac{\alpha}{1} \leq p_{(K)} \), then accept \(H_{0(K)} \) and stop; otherwise reject \(H_{0(K)} \) and stop.

10.4 Controlling false discovery rate

Rejecting null hypothesis when it is true means “false discovery” (Type I error).

- **False discovery proportion (FDP)** is defined as
 \[
 \text{FDP} = \frac{\# \text{ of false discoveries}}{\# \text{ of all discoveries}},
 \]
 where the \# is counted from \(K \) tests.

- **False discovery rate (FDR)** is defined as the expectation of FDP, i.e.,
 \[
 \text{FDR} = E(\text{FDP}).
 \]
 We want to control FDR as \(\text{FDR} \leq \alpha \).

- **Benjamini and Hochberg method.**
 -Order p-values as \(p_{(1)} \leq p_{(2)} \leq \cdots \leq p_{(K)} \).
 -Let \(l_i = \frac{\alpha}{KC_K} \), where
 \[
 C_K = \begin{cases}
 1 & \text{if tests are independent} \\
 \sum_{i=1}^{K} \frac{1}{i} & \text{otherwise}
 \end{cases}
 \]
 -Let \(r = \max\{i | p_{(i)} < l_i \} \).
 -Set \(t = p_{(r)} \) as the Benjamini-Hochberg rejection threshold. Reject all null hypotheses whose \(p_k \leq t \).

11 Lecture 11: Hypothesis testing, practical procedures

11.1 Wald test

- \(\hat{\theta} \) is an estimator of \(\theta \). To test \(H_0 : \theta = \theta_0 \), against the alternative \(H_A : \theta \neq \theta_0 \), \(\frac{\hat{\theta} - \theta_0}{se(\hat{\theta})} \) is a good indicator of discrepancy.

- Suppose \(\hat{\theta} \) is (approximately) normal:
 \[
 \sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N(0, \sigma^2) \implies \hat{\theta} \sim N(\theta, (se(\hat{\theta}))^2) \implies \frac{\hat{\theta} - \theta}{se(\hat{\theta})} \sim N(0, 1).
 \]

- If \(se(\hat{\theta}) \) is unknown (because \(\theta \) is unknown), then we can estimate it by
 \[
 se(\hat{\theta}) \approx \hat{se}(\hat{\theta}) = \sqrt{\text{Var}(\hat{\theta})}, \text{ or } \sigma^2 \approx \hat{\sigma}^2.
 \]

We reject \(H_0 \) if \(\frac{\hat{\theta} - \theta_0}{\sqrt{\text{Var}(\hat{\theta})}} \) is too large or too small. Equivalently, reject \(H_0 \) if
\[
\frac{(\hat{\theta} - \theta_0)^2}{\text{Var}(\hat{\theta})} \sim \chi^2(1)
\]
is too large.
• In multidimensional case, with (approximately) normality,
\[\sqrt{n} (\hat{\theta} - \theta) \sim N(0, V), \]
where \(V_{p \times p} \) is variance matrix. Then the Wald test becomes reject \(H_0 \) if
\[n(\hat{\theta} - \theta_0)^T V^{-1}(\hat{\theta} - \theta_0) \sim \chi^2(p). \]
If \(V \) unknown, estimate it as \(\hat{V} = V(\hat{\theta}) \) or \(\hat{V} = V(\theta_0) \).

• If \(\hat{\theta} \) is an \textbf{MLE} of \(\theta \), then
\[V(\theta) = I^{-1}(\theta), \]
where \(I(\theta) \) is the Fisher information matrix for \textit{ONE} observation.

11.2 \textbf{Likelihood ratio test}
Consider parametric model and its hypotheses \(H_0 : \theta \in \Theta_0 \) and \(H_A : \theta \in \Theta_A \).

• From Neyman-Pearson lemma, the optimal test is based on
\[\frac{f_A(x)}{f_0(x)} = \frac{L(\theta_A)}{L(\theta_0)} \geq c. \]
Or equivalently
\[\log L(\theta_A) - \log L(\theta_0) = l(\theta_A) - l(\theta_0) \geq c. \]

• To extend this to multiple hypotheses case, the \textbf{likelihood ratio test statistic} is defined as: reject \(H_0 \) if
\[\sup_{\theta \in \Theta_A} L(\theta) \geq c. \]
Or alternatively, reject \(H_0 \) if
\[\sup_{\theta \in \Theta_0} L(\theta) \geq c. \]

• Let \(\hat{\theta} \) and \(\hat{\theta}_0 \) be unconstrained and constrained MLE, respectively. Then the test in logarithm form: reject \(H_0 \) if
\[2(l(\hat{\theta}) - l(\hat{\theta}_0)) \geq c, \]
where the 2 is to ensure that the statistic has the approximate distribution \(\chi^2(p) \), where \(p \) is the number of restrictions imposed by the null hypothesis.

11.3 \textbf{Rao score test via Lagrange multipliers}
If the null hypothesis is interpreted as a restriction on parameters: \(H_0 : g(\theta) = 0 \), and the alternative is again \(H_A : g(\theta) \neq 0 \), then following the idea of Neyman-Pearson, we can check the magnitude of Lagrange multiplier as an indicator of how much the constraint is violated.

• Consider maximizing \(l(\theta) - \lambda g(\theta) \). Setting the derivative (in \(\theta \)) to zero, we have
\[\lambda(\theta) = \frac{f'(\theta)}{g'(\theta)} = \frac{f'(x; \theta)}{f(x; \theta)} \frac{1}{g'(\theta)}. \]
We reject null if \(\left| \frac{\lambda(\theta)}{\lambda(\Theta)} \right| \) or \(\frac{\chi^2(\theta)}{\text{Var}(\lambda(\theta))} \) is too large.

• When \(g(\theta) = \theta - \theta_0 \), \(g'(\theta) = 1 \), \(\text{Var}(\lambda(\theta_0)) = nI(\theta_0) \). Then
\[\frac{\lambda(\theta_0)}{\sqrt{nI(\theta_0)}} \sim N(0, 1), \frac{\lambda^2(\theta_0)}{nI(\theta_0)} \sim \chi^2(1). \]
Quantiles can be applied to find rejection region.
3 Score test for Binomial.

\[X \sim Bin(n, p). \] To compute the score function and Fisher information:

\[\lambda(p) = s(p) = \frac{n(\hat{p} - p)}{p(1 - p)} \] \[nI(p) = \frac{n}{p(1 - p)}. \]

Therefore,

\[Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0, 1), \]

which is equivalent to Wald test with \(se(\hat{p}|p) \) estimated as \(se(\hat{p}|p_0) \) instead of \(se(\hat{p}|\hat{p}) \).

![Figure 1: Illustration of Wald, LRT and Rao tests.](image)

11.4 Bayes factor

To interpret Neyman-Pearson in Bayesian formula, consider averaging instead of maximization: reject \(H_0 \) if

\[\frac{\int_{\Theta_A} L(\theta)\pi_A(\theta)d\theta}{\int_{\Theta_0} L(\theta)\pi_0(\theta)d\theta} \geq c, \]

where \(\pi_A \) and \(\pi_0 \) are priors over \(\Theta_A \) and \(\Theta_0 \).