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11.2 Samuel's Checkers Player  
An important precursor to Tesauro's TD-Gammon was the seminal work of Arthur Samuel (1959, 1967) 
in constructing programs for learning to play checkers. Samuel was one of the first to make effective use 
of heuristic search methods and of what we would now call temporal-difference learning. His checkers 
players are instructive case studies in addition to being of historical interest. We emphasize the 
relationship of Samuel's methods to modern reinforcement learning methods and try to convey some of 
Samuel's motivation for using them.  

Samuel first wrote a checkers-playing program for the IBM 701 in 1952. His first learning program was 
completed in 1955 and was demonstrated on television in 1956. Later versions of the program achieved 
good, though not expert, playing skill. Samuel was attracted to game-playing as a domain for studying 
machine learning because games are less complicated than problems "taken from life" while still 
allowing fruitful study of how heuristic procedures and learning can be used together. He chose to study 
checkers instead of chess because its relative simplicity made it possible to focus more strongly on 
learning.  

Samuel's programs played by performing a lookahead search from each current position. They used 
what we now call heuristic search methods to determine how to expand the search tree and when to stop 
searching. The terminal board positions of each search were evaluated, or "scored," by a value function, 
or "scoring polynomial," using linear function approximation. In this and other respects Samuel's work 
seems to have been inspired by the suggestions of Shannon (1950). In particular, Samuel's program was 
based on Shannon's minimax procedure to find the best move from the current position. Working 
backward through the search tree from the scored terminal positions, each position was given the score 
of the position that would result from the best move, assuming that the machine would always try to 
maximize the score, while the opponent would always try to minimize it. Samuel called this the backed-
up score of the position. When the minimax procedure reached the search tree's root--the current 
position--it yielded the best move under the assumption that the opponent would be using the same 
evaluation criterion, shifted to its point of view. Some versions of Samuel's programs used sophisticated 
search control methods analogous to what are known as "alpha-beta" cutoffs (e.g., see Pearl, 1984).  

Samuel used two main learning methods, the simplest of which he called rote learning. It consisted 
simply of saving a description of each board position encountered during play together with its backed-
up value determined by the minimax procedure. The result was that if a position that had already been 
encountered were to occur again as a terminal position of a search tree, the depth of the search was 
effectively amplified since this position's stored value cached the results of one or more searches 
conducted earlier. One initial problem was that the program was not encouraged to move along the most 
direct path to a win. Samuel gave it a "a sense of direction" by decreasing a position's value a small 
amount each time it was backed up a level (called a ply) during the minimax analysis. "If the program is 
now faced with a choice of board positions whose scores differ only by the ply number, it will 
automatically make the most advantageous choice, choosing a low-ply alternative if winning and a high-
ply alternative if losing" (Samuel, 1959, p. 80). Samuel found this discounting-like technique essential 
to successful learning. Rote learning produced slow but continuous improvement that was most effective 
for opening and endgame play. His program became a "better-than-average novice" after learning from 
many games against itself, a variety of human opponents, and from book games in a supervised learning 
mode.  
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Rote learning and other aspects of Samuel's work strongly suggest the essential idea of temporal-
difference learning--that the value of a state should equal the value of likely following states. Samuel 
came closest to this idea in his second learning method, his "learning by generalization" procedure for 
modifying the parameters of the value function. Samuel's method was the same in concept as that used 
much later by Tesauro in TD-Gammon. He played his program many games against another version of 
itself and performed a backup operation after each move. The idea of Samuel's backup is suggested by 
the diagram in Figure  11.3. Each open circle represents a position where the program moves next, an 
on-move position, and each solid circle represents a position where the opponent moves next. A backup 
was made to the value of each on-move position after a move by each side, resulting in a second on-
move position. The backup was toward the minimax value of a search launched from the second on-
move position. Thus, the overall effect was that of a backup consisting of one full move of real events 
and then a search over possible events, as suggested by Figure  11.3. Samuel's actual algorithm was 
significantly more complex than this for computational reasons, but this was the basic idea.  

 

 
Samuel did not include explicit rewards. Instead, he fixed the weight of the most important feature, the 
piece advantage feature, which measured the number of pieces the program had relative to how many its 
opponent had, giving higher weight to kings, and including refinements so that it was better to trade 
pieces when winning than when losing. Thus, the goal of Samuel's program was to improve its piece 
advantage, which in checkers is highly correlated with winning.  

However, Samuel's learning method may have been missing an essential part of a sound temporal-
difference algorithm. Temporal-difference learning can be viewed as a way of making a value function 
consistent with itself, and this we can clearly see in Samuel's method. But also needed is a way of tying 
the value function to the true value of the states. We have enforced this via rewards and by discounting 
or giving a fixed value to the terminal state. But Samuel's method included no rewards and no special 
treatment of the terminal positions of games. As Samuel himself pointed out, his value function could 
have become consistent merely by giving a constant value to all positions. He hoped to discourage such 
solutions by giving his piece-advantage term a large, nonmodifiable weight. But although this may 
decrease the likelihood of finding useless evaluation functions, it does not prohibit them. For example, a 

  

Figure 11.3: The backup diagram for Samuel's checkers player. 
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constant function could still be attained by setting the modifiable weights so as to cancel the effect of the 
nonmodifiable one.  

Since Samuel's learning procedure was not constrained to find useful evaluation functions, it should 
have been possible for it to become worse with experience. In fact, Samuel reported observing this 
during extensive self-play training sessions. To get the program improving again, Samuel had to 
intervene and set the weight with the largest absolute value back to zero. His interpretation was that this 
drastic intervention jarred the program out of local optima, but another possibility is that it jarred the 
program out of evaluation functions that were consistent but had little to do with winning or losing the 
game.  

Despite these potential problems, Samuel's checkers player using the generalization learning method 
approached "better-than-average" play. Fairly good amateur opponents characterized it as "tricky but 
beatable" (Samuel, 1959). In contrast to the rote-learning version, this version was able to develop a 
good middle game but remained weak in opening and endgame play. This program also included an 
ability to search through sets of features to find those that were most useful in forming the value 
function. A later version (Samuel, 1967) included refinements in its search procedure, such as alpha-beta 
pruning, extensive use of a supervised learning mode called "book learning," and hierarchical lookup 
tables called signature tables (Griffith, 1966) to represent the value function instead of linear function 
approximation. This version learned to play much better than the 1959 program, though still not at a 
master level. Samuel's checkers-playing program was widely recognized as a significant achievement in 
artificial intelligence and machine learning.  
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