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Abstract— Using a combination of techniques from visual
tracking, image-based rendering, distributed programming, and
robot motion control, we present a predictive display system
to improve local operator’s performance in tele-manipulations.
More precisely, we construct a networked distributed system
allowing the robot motion control and predictive display function
to be implemented in a single PVM (Parallel Virtual Machine)
program running on both the operator and remote scene com-
puter. We also integrate our system with real-time pose tracking
of the operator to allow 3D rendering in HMD.

I. I NTRODUCTION

In tele-operation tasks such as space robotics, toxic or
radioactive cleanup, human operators observe a remote scene
through cameras, while tele-manipulating a robot. The oper-
ator response is based on the latest feedback images from
the cameras (see Figure.1). A main challenge is that typical
network and switching delays in the feedback path start in
the order of seconds and increase with transmission distance.
As a basis for comparison, the psychophysics literature in-
dicates that delays as short as 0.5 second can impair the
performance of an operator involved in a teleoperation task.
In fact, the visuomotor tracking capabilities of humans and
primates have often been compared to an asynchronous system
with intermittent sample-data control [1]. Furthermore, in
[2], the authors mention that human tracking patterns are
similar to intermittent sample and hold patterns for which the
rate of corrections is controlled by the delays of the visual
feedback. Hence, it would appear that longer delays decrease
the motor correction rate. Also, other factors such as limited
bandwidth contribute to low-resolution and/or low frame rate
video streams and impair human performances even more. [3]

Predictive display has been defined as using a computer
for extrapolating displays forward in time [4]. This definition
could well be generalized to generating a display without
necessarily relying on time extrapolation or delayed feedback.
With this in mind, a local model of the remote scene can
be used to predict and render the remote scene in response
to operator motor commands. It replaces the delayed video
feedback with immediate synthesized images and enables local
operators to perform operations normally. In most predictive
display systems a CAD-based line drawing of the scene and
objects is rendered and overlaid on the delayed video using an
apriori calibrated transform [4]. However, many applications
in tele-robotics are in non-engineered environments, where
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precise 3D models of objects and scenes are difficult to obtain.
Capitalizing on recent developments in both computer vi-

sion and computer graphics it is now possible to develop
visual models of a robotic work-site without needing a-priori
geometry [5]. Here we extend this work by a distributed
systems implementation and evaluation. First an image-based
model of the remote scene is captured by moving (eye-in-
hand) camera. The model is then transmitted to the operator
site and used to generate various viewpoints of the scene
in response to operator head movements using image-based
rendering(IBR). This avoids both time-consuming modeling
and cumbersome calibration of the model-camera alignment.
Particular features of our system are:

� A combination of real-time visual tracking, structure-
from-motion geometric modeling and dynamic textures
allows models to be captured by the remote scene camera
without the need for special calibration or cumbersome
manual modeling.

� Implementation of a networked distributed system al-
lowing the robot motion control and model acquisition
functions to be implemented in a single Parallel Virtual
Machine(PVM) [6] program running on both the operator
and remote scene computer.

� Integration and implementation of an user interface in
which the remote robot motion and scene rendering are
parameterized by the pose of the operator (orientation of
the head).

� All parts of the system are commodity (consumer level)
hardware, and the PVM allows execution over both
intra-nets and the widely available Internet, potentially
allowing low cost tele-operation and inspection between
almost any two sites.



The rest of the paper is organized as follows. Section II
briefly reviews the functionalities of predictive display system.
Section III presents the system components in details. Section
IV shows experimental results. Concluding remarks are drawn
in Section V.

II. SYSTEM OVERVIEW

Consider a tele-robotics setup (see Figure.1) where an
operator controls a remote robot. The remote scene is viewed
by camera mounted on the robot. The scene images are shown
to the operator using e.g. a video screen or head mounted
display(HMD).

Let ������� � � � ���� � � �� be a sequence of viewpoint
motion commands by the tele-operator. Assuming a round-
trip delay�, the operator will not see the results of the current
motion�� until time �� �.

Combining techniques from visual tracking, view synthesis,
networked programming, and robot motion control, we present
a predictive display system which by removing much of the
time delay improves local operator’s performance in tele-
manipulation. While controlling the robot remotely, instead
of seeing the real video image, the operator observes an
estimated image�� from scene viewpoint�� rendered immedi-
ately from an image-based model� . The model is generated
using a sequence of (previous) images from the remote scene
���� �� � � � ��� as training data. To support realistic high fi-
delity rendering we replace the standard texture image with a
time varying dynamic texture [7] which like in mpeg movie
compression compensates for errors in the motion prediction.

Networked Program

A predictive display system consists of several individual
software components mapping onto computers at both the
operator and robot site. Efficient communication has been
studied in the field of distributed programming. PVM [6] is
a software system that allows the utilization of heterogeneous
network of parallel and serial computers as a single computa-
tional resource. We integrate the components via PVM as one
single networked program operating on both the operator site
and remote site. Briefly, we go over the components in the
following:

A. Operator Site

In the operator end, after the operator sends each robot mo-
tor command to the remote robot, the scene renders a synthetic
view immediately for the operator. The system consists these
components: a head tracker for head pose acquisition, a scene
model for rendering synthetic view.

� Head Tracker
Being able to sense the human operator’s movement is
of great interest in the field of tele-manipulation. In our
setup, when the operator moves (e.g. rotates) his/her head
the motion is sensed by a head tracker. The head tracker
continuously provides the 3D (orientations) parameters
of the operator’s head via PVM to both the local scene
rendering and remote robot site.

� Scene Rendering
As the head tracker updates the operator’s head pose
through PVM broadcast, the scene model renders the
view with respect to the operator’s head, and shows it
to operator immediately.

B. Remote Site

While in the remote end, the networked system consists the
following components: a robot control process, a eye-in-hand
camera mounted on the robotic arm for real scene capturing
and a visual tracking process for scene modeling. The scene
model can be constructed off-line or on-line at the remote site,
and then compressed and transmitted to the operator site. In
our system, we adapt the dynamic texture rendering model
by Cobzas et al [7]. The model merges a coarse geometry-
based modeling and image-based methods which generalized
view-based textures from a discrete set of example textures
to a continuous texture synthesis. The scene geometry and
appearance is captured using structure-from-motion (SFM) [8]
by an uncalibrated eye-in-hand camera mounted on the remote
robot.

� Robot/Camera motion control process
With a eye-in-hand camera mounted on it, the robot is
controlled remotely via PVM to replicate the operator’s
viewpoint changes. Through PVM, the robot receives the
motor command, and moves accordingly, which updates
the camera’s view point so that the camera watches the
scene from the same view point as the operator in the
other end.

� Visual Tracking process
As described above, the scene geometry and appearance
is captured using SFM by an uncalibrated eye-in-hand
camera. Visual tracking is needed for feature points
correspondences in SFM. Through PVM, the operator
drives the robot to different joint configurations, while
the tracking records the image coordinates of the features
points. Extended from Cobzas et al [7], we index the
views by the robot joint configuration as well , which
enables us to recover the joint motor command given
view parameters of the scene.

III. SYSTEM PARTS

As pointed out earlier, our method has two stages. The first
stage is run offline and automatically captures a model of the
remote scene. The second stage is run on-line and uses the
captured model to synchronously render predicted views of
the scene in response to operator motion.

The following sections will detail the system parts and
functions of our system.

A. Video

Until recently transmitting video over a distance required ex-
pensive high bandwidth point-to-point connections. Recently,
with improvements to Internet capacity, and the availability
of high speed internet connections in most parts of the



country, developing inexpensive systems based on commod-
ity PC hardware and networking has become a possibility.
Consumer applications of this include video-phoning and tele-
conferencing software such as “virtual meeting” and “gnome
meeting”.

Our system uses the same type of hardware for the video
acquisition. Recent consumer web cams based on the IEEE
1394 camera communication standard on a 400Mb/s digital
network allows real-time (30Hz) capture of reasonable quality
digital video. We have successfully used Pyro1394 and iBot
web cams (each about US$100). The IEEE 1394 network has
a maximum cable length of 4.5m and hence the uncompressed
video has to be processed at the remote site. The remote
computer is a standard 1.3GHz consumer PC running Linux.
Using public domain software libraries for IEEE 1394 network
and camera drivers and the XVision2 [9] real-time tracking
routines, we implement a video pipeline and visual tracking
on the remote computer.

B. Tracking

The visual tracking processes the real-time video and in
each frame� calculates1 the image plane projection�� �
����� � 	��� �

� of a set of
 fiducial points. Briefly, the tracking
is a dynamic system implementation of an SSD patch tracker
[10]. Given a small reference image patch�, the current image
frame�� and an estimate of its approximate location, here we
use where it was last seen,����. the patch new position is
calculated by solving for a correction�� and updating the
current state�� :

�� ��� �� � �
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Here�� ��� is the sub-image corresponding to E cut out from
the current frame�� at coordinates� and stacked into a
column vector. The above update uses a linearized model of
image variability and is iterated two to three times for each
frame for convergence.

Current PC’s can track a set of small patches in real time,
but are not fast enough process the whole frame tiled into
patches at 30Hz. Practically instead, the user selects a set
of salient features by marking several fiducial points in the
initial (static) video image of a scene. The points are placed
to capture the geometric variation in the scene, and the convex
hull of the points define the area of interest to be encoded in
the visual model.

C. Visual Model

To capture and build a visual model of the remote scene, the
video images and corresponding tracked image points are used
as input to a modeling algorithm. The modeling algorithm
builds a geometric 3D structure of scene points
 � �� ��� � �

1Here and in the following vectors are written bold and matrices capital-
ized.A bold capital indicates an image that has been flattened into a column
vector

	 � � � 
 from the image coordinates����� � of the set of tracked
points over several video frames� � 	 � � �� using a structure-
from-motion algorithm. In the past ten years several such
algorithms have been published for both non-linear perspective
and linear affine camera models [11]. For performance reasons
we choose to implement a linear factorization algorithm based
on a weak perspective camera [8]. Under this camera model,
the input image points and structure can be related in each
video frame through the weak perspective camera equation:

�� �

�
��
	�

�
� ������� �

�
�

�

�

where���� is the camera-scene rotation matrix parameterized
in Euler angles�, ��� ��� is the translation and� scale.

In conventional graphics textures are represented as an
image on the triangulated surface of the 3D structure
 .
This assumes that the geometry accurately represents the true
underlying scene. In image-based modeling and rendering it
has proven hard to automatically extract and align a scene
geometry with video [12]. Here we instead model appearance
with a time-varyingdynamic texture [13], [14]. During the
model capture and tracking, key frames from which to code the
texture variation are picked at about 5Hz. For each key frame
the projection of the geometric structure� ��� is used to warp
the image�� into a texture���� with canonical coordinates
� chosen as the mean image projection of the structure� � �
�

�

�
� ���� . If the estimated geometric structure had accurately

represented the real scene this texture image would be near
constant for different viewpoints. In practice, the estimated
structure is at best a coarse approximation of the scene, and
the texture image varies for different viewpoints. However
this variation can be smoothly parameterized using a basis
B computed by principal component analysis from the sample
image textures as

���� � �	� �

where	� is a view dependent texture modulation coefficient
vector. It has been shown that the modulation coefficient	���
varies smoothly with viewing angle� [15] and� captures the
texture variability [7] up to a first order model of true intensity
variation.

Hence a complete model is extracted from the video using
� sample frames (typically 128-512) and is represented as
a 3D geometry
 , set of sample poses
� � ��� �� �� ��,
corresponding modulation coefficients	� and texture basis�.

D. Human Machine Interface

To enhance operator’s immersive sensation, we integrate and
implement the user interface in which the robot motion is
parameterized by the pose of the operator.

1) HMD Tracking:
To simulate the presence of the user in the remote envi-

ronment the human computer interface must let the user move
around. The variations in the pose of the operator are converted
into commands for the manipulator and specify a view of the
model.



The current setup uses a magnetic tracker, a built-in
compass-like mechanical device in the i-glasses HMD (from
Virtual I-O), to determine the pose (roll, pitch, yaw) of the
operator. The head tracker continuously sends its latest pose
via an RS-232C serial interface to its host computer at about
250 HZ. The roll,pitch and yaw readings are converted to
linear values where +/-16384= +/-180 degree. [16].

2) Remote Motion:
The remote robot mimics the operator’s head motions. In

our system setup, we employ a Surveyor’s “Transit RCM”
unit, a robotic camera mount system. [17] The Pan-Tilt has
only two DOF, pan and tilt. It is based on “dead reckoning” in
the sense that we specify the pan and tilt values, and the head
points in whatever it considers to be that direction. We can’t
directly specify its velocities or accelerations. Despite of all
the constraints, it is sufficient to replicate the operator head’s
yaw and pitch rotations. Referring to Fig.2, since the camera
is mounted on the pan-tilt is always pointing approximately
inwards to rotation axis of the pan-tilt, it allows the camera
to move to different viewpoints on a sphere centered near the
scene.

Fig. 2. Our prototype robot setup: a Pan-Tilt with an iBot camera mounted
on an extended linkage (eye-in-hand).

E. Rendering

Instead of watching the delayed video streams from the remote
site, the operator is shown the synthetic view immediately
in response to head movements. The scene model renders a
corresponding synthetic view of the remote scene as the head
tracker continuously updates its pose. In our system, the ap-
pearance and the coarse geometry of the scene model are both
indexed by a set of pose parameters
� � ��� �� �� �� obtained
from SFM. A new view is rendered by first modulating a new
texture corresponding to this view

�� � �	� �

then reprojecting the geometric scene structure into the current
camera frame, and the texture mapping onto it.

A stereo view is rendered from the model by a pose offset
between the left and right HMD eye display. This is efficiently
implemented using line stippling techniques in openGL, with

even lines of the view rendered to one eye and odd lines
rendered to the other eye of the HMD simultaneously.

IV. EXPERIMENTS

A. Prototype system

To practically develop and evaluate our predictive display
system, we set up a simple prototype. At one end of the lab
we mount an standard web-cam on the pan-tilt, with motion
control using a serial interface to a standard PC. At the other
end of the lab, the operator is wearing an HMD connected to
another PC. The PCs are connected via departmental Ethernet.

Since our camera motion device, the Pan-Tilt, only takes
open loop “dead reckoning” commands, we can’t directly
specify the velocities/accelerations or acquire the exact com-
pletion time. In order to measure the remote system response
time, we have to measure it indirectly.(Here by system re-
sponse time, we mean the difference between the time we
send the command and the Pan-Tilt finish the movement.)
We track a feature point in the scene as soon as the Pan-
Tilt starts it motion, and record the trajectory of the point’s
X-Y coordinates while it moves. As soon as the trajectory
stabilizes, we pick that exact moment as the Pan-Tilt stops
its movement. In the following, we adapt the notation��� ��
to indicate the Pan-Tilt’s configuration where� indicates the
pan,� indicates the tilt.

The profiles of two runs of the indirect measurement is
illustrated in Fig.3. Starting from the same configuration (80,
90), the top profile shows the Pan-Tilt moves to (10,90) while
the bottom one shows it moves to (70, 90). The stabilization
in the bottom is faster than the top one because the Pan-Tilt
rotates more degrees in the latter case. Because the movements
of the Pan-Tilt is discretized, we can see curve is “jerky”.
Also, for the bottom profile, it only pans 10 readings(14 RAD).
From start till stabilization, it takes about 1.4 seconds. The
Pan-Tilt starts the motor and then slows quickly to adjust the
overshoots, which contributes to the bumpy looking of the
profile.

To study the relation between degrees of pan and the
response time, we conduct an experiment: starting from the
same configuration, we drive the Pan-Tilt to rotate 10, 20, 30,
40, 50, 60, and 70 readings for 20 runs each. We compute the
average system response time for each trial. Showing in Fig.4
, it can be characterized as a linear system:

� ��� � ��� ��

Where� is the reading of the rotation. In this experiment, using
linear least square fitting, we get�= 0.0217 and�� =1.3411.
�� is the time required for transmission of the Pan-Tilt motion
command and starting of Pan-Tilt’s motor.

To study the step response time of our predictive system,
we have a user wear the HMD, and perform view point re-
orientations. The user waits until the image being shown is
stabilized then turn to another view point. First, we provide
the user with only the delayed video stream, and record the
degrees of rotation and time (See Top graph of Fig.5). The
flat/horizontal segments in the graph indicate that the user
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Fig. 3. Step response of the camera motion head measured by visual tracking
of scene feature points. Top: Pan-Tilt moves from angles (80,90) to (10, 90).
Bottom: Pan-Tilt moves from (80,90) to (70,90).
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employs “move-and-wait” strategy as he turns slowly. The user
is able to accomplish 2-3 view point changes in 30 seconds.
In the second experiment, we provide the user with predictive
display and record the time and yaw readings from the HMD
(See Bottom graph of Fig. 5). The user turns at high speed at
first, slows down, and then speeds up again. As the user stops
to observe the image, overshoot in the readings occurs due
to the pose tracker in the HMD. We see that there is larger
overshoot when the user turns at higher speed and smaller
overshoot at lower speed. Referring to Fig.5, the step response
time for the predictive display is approximately (or less than)

one second, which is an improvement over the performance
of 10-15 seconds with only delayed video stream.
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Fig. 5. An user wears the HMD and performs view point re-orientation.
We record the degree of rotation and the time.Top: Remote control perfor-
mance provided with only delayed video stream; Bottom: Performance with
predictive display

B. Visual certification: modeling and rendering an oilsand
crusher

The province of Alberta, Canada is rich in oil. Natural
oils are stored in solid form “oilsand” instead of liquid. The
first step in extractions involves using crushers, (see Fig.6) to
mechanically achieve a uniform size distribution. A problem
causing significant production delays is when foreign objects,
such as the broken shoveler tooth in the picture gets stuck
somewhere in the crusher.

We construct a scale model of this scene to certify that
the technique of image-based modeling and rendering can
be applied in predictive display. (See Fig.2) Instead of a
shoveler’s tooth, we use a small LED light placed in various
places inbetween and partially occluded behind the crusher
rollers, see Fig.7. The scene has fairly complex geometry
which would be difficult to capture completely in a an a-priori
graphics model. Using the��
����������� techniques, a very
simple geometric model can be used including only easily
trackable points, and the dynamic textures compensates for
the geometric inaccuracy (note the LED is represented mostly
by the dynamic texture, and not by geometry). In the figure
rendered and real images can be compared.



Fig. 6. Close-up of a shoveler’s missing tooth stuck in the oilsand crusher.
Image from Syncrude Inc.

Fig. 7. Image sequence predicted for different viewpoints (top) and ground
truth from corresponding (delayed) real images taken from the same view
points(bottom). Images(left) with the led light detected, and image (right)
with led light blocked.

V. DISCUSSION

Being able to solve the problem of system delays in
visuomotor tasks is essential for developing advanced man
machine interfaces for teleoperation and increasing operator’s
performance. Yet, delays are unavoidable in any communica-
tion. We presented a predictive display system that overcomes
the visual feedback delays by locally using an image-based
model of a remote scene. Image-based models are graphics
models created from images that can be used the same way
as the more conventional 3D models. The model is created
remotely by the manipulator.

Making use of the recent advances from various research
areas in computer science, we implement and integrate a
predictive display system, which is operated in two separate
stages. The first stage is run offline and automatically captures
a texture model of the remote scene. The second stage is
run on-line and uses the captured model to synchronously
render predicted views of the scene in response to the operator
motion.

Our system is built from moderately priced consumer HW

(about $350 for camera and Pan-Tilt, $700 for Virtual IO
HMD), and it uses a common Internet connection instead of
dedicated high speed video links.

Our results from the pan-tilt prototype experiment indicate
that there is still a minor delay in our predictive display. But
comparing with the network delays and robot system response
delays which are in order of seconds, the system promises
improvements on the operator’s performance. The experiment
of modeling and rendering oil sand crusher shows that using
image-based methods allows us to render predicted/synthetic
view in real-time without sacrificing the quality of the image.

In the future, we will use the 6 DOF PUMA robot to replace
the Pan-Tilt in our current setup, and put the predictive display
into the UofA 3D immersive CAVE.
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