

Image dependent basis

- Other transforms, (Fourier and Cosine) uses a fixed basis.
- Better compression can be achieved by tailoring the basis to the image (pixel) statistics.

Natural images = stochastic variables

- The samplings **x** =[x₁, x₂,...,x_w] of natural image intensities or optic flows are far from uniform!
- Draw x₁, x₂,...,x_w: Localized clouds of points.
- Particularly localized for e.g.
 - Groups of faces or similar objects
 - Lighting
 - Small motions represented as intensity changes or optic flow. (Note coupling through optic flow equation)

Estimated Covariance Matrix

$$C_{k,l} = \frac{1}{W} (\sum_{j}^{W-1} \vec{x}_{j}^{k^{T}} \vec{x}_{j}^{l}) - \vec{m}^{T} \vec{m} \quad (eqn1)$$
$$\vec{m} = \frac{1}{W} (\sum_{j}^{W-1} \vec{x}_{j}) \quad (eqn2)$$

Note 1: Can more compactly write: C = X'*X and m = sum(x)/w Note 2: Covariance matrix is both symmetric and real, therefore the matrix can be diagonalized and its eigenvalues will be real

Summary Hotelling, PCA, KLT Advantages: Optimal coding in the least square sense Theoretcially well founded Image dependent basis: We can interpret variation in our particular set of images.

- Disadvantages:
- 1. Computationally intensive
- 2. Image dependent basis (we have to compute it)