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Linear Subspace Transforms

PCA, Karhunen-
Loeve, Hotelling
c306, 2001
Martin Jagersand

Image dependent basis

l Other transforms, (Fourier and Cosine) uses a 
fixed basis.

l Better compression can be achieved by 
tailoring the basis to the image (pixel) statistics.

Sample data

l Let x =[x1, x2,…,xw] be a sequence of random 
variables (vectors)

Example 1: x = Column flattening of an image, so 
x is a sample over several images.

Example 2: x = Column flattening of an image 
block. x could be sampled from only one image.

Example 3: x = optic flow field.

Natural images = 
stochastic variables

l The samplings x =[x1, x2,…,xw] of natural image 
intensities or optic flows are far from uniform!

l Draw x1, x2,…,xw: Localized clouds of points.
l Particularly localized for e.g.

– Groups of faces or similar objects
– Lighting
– Small motions represented as intensity changes or 

optic flow. (Note coupling through optic flow 
equation)
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Dimensionality reduction

l Find an ON basis B which “compacts” x
l Can write:

x = y1B1 + y2B2 +…+ ywBw

l But can drop some and only use a subset, i.e.
x = y1B1 + y2B2

Result: Fewer y values encode almost all the 
data in x

Estimated Covariance Matrix

Note 1: Can more compactly write: 
C = X’*X  and m = sum(x)/w
Note 2: Covariance matrix is both symmetric and 

real, therefore the matrix can be diagonalized and 
its eigenvalues will be real
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Coordinate Transform

l Diagonalize C, ie find B s.t.
B’CB = D = diag(         )

Note: 
1. C symmetric => B orthogonal
2. B columns = C eigenvectors

jλ

Definition
KL, PCA, Hotelling transform

l The forward coordinate transform
y = B’*(x-mx)

l Inverse transform
x = B*y + mx

Note: my = E[y] = 0     zero mean
C = E[yy’] = D diagonal cov matrix
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Study eigenvalues

l Typically quickly decreasing: 

l Write:
x = y1B1 + y2B2 +…+ ym Bm +…+ ywBw

l But can drop some and only use a subset, i.e.
xm = y1B1 + y2B2 +…+ ym Bm 

Result: Fewer y values encode almost all the data in x
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Remaining error

l Mean square error of the approximation is
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Example eigen-images
1: Lighting variation

Example eigen-images 2
Motions

Motions with my arm sampled densely
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Human Arm Animation

Training sequence Simulated Animation

Modulating Basis Vectors

Vectors:      5 and 6 1-6

Practically:

C=XX’ quite large, eig(C) impractical.
Instead:
1. C=X’X, [d,V]= eig(C), eigenvectors U=XV
2. [U,s,V] = svd(X)

(since C = XX’ = Us^2U’)

Summary
Hotelling,PCA,KLT

l Advantages:
1. Optimal coding in the least square sense
2. Theoretcially well founded
3. Image dependent basis: We can interpret variation in 

our particular set of images.

l Disadvantages:
1. Computationally intensive
2. Image dependent basis (we have to compute it)


