

- Various operators can be used to *enhance* rapid contrast changes
- Detecting these contrast changes involves thresholding to separate noise from signal
- Edges are a result of grouping pixels (sometimes called "edgels") into groups forming continuous curves.

Definitions:

Edge normal: Unit vector in direction of maximum intensity variation Edge direction: Perpendicular to edge normal Edge position: Image position of pixels of edge Edge strength: Change in contrast along normal

The Procedure

• Enhancement:

- compute x and y derivatives using DoG's.
- compute direction and magnitude of gradient (two images)
- Nonmaximal Suppression:
 - Sample along the gradient direction
 - If given pixel is smaller than neighbor, set it to zero
- Hysteresis Thresholding:
 - Starting from upper left, visit pixels until one exceeds t_{upper}
 - Follow chains of maxima in edge directions until value drops below $t_{\rm lower}$
 - Mark and save all visited values as a connected contour

- Generalizations
 - Any linear in parameters model: e.g a x^2 + b y^2 = 1 can use the same algorithm
 - For f(x,a) = 0, choose any cell a_c s.t. f(x,a_c) < t for some threshold t.
- Limitations:
 - the curse of dimensionality

Alternatives to intensity

• What is this?