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DFT in matrix form
.
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e Note: u=Ax form! Inverse: ~ ATa
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Displaying the Fourier Transform
G

e Practically the Fourier transform coefficients
have a large range

e Usually the magnitude |F(u,v)| is what we want
to see

e Compress range variation to see as an image:
D(i,j) = c*log(1+|F(u,v)[)

Manmade object images:

e What does the F-t express?




Periodicity
. |
e The fourier transform highlights/identifies
periodic structure in images.

e This is seen as peaks (usually several) along
the same axis as the repetition in the original
image

What does the F-t express?

All basisimages

intensity ~ that frequency’s coefficient

Frequency spectrum
.

e By convention the lowest frequency
components are shifted to the center of the
image. (use fftshift in matlab)

e Fourier transform coefficients tells us the
relative composition of low and high spatial
frequencies, l.e. the frequency spectrum

e Usually more lows than highs

Data Reduction: only use some of the existing frequencies




Properties:
Rotation

e Notice direction of F-t:

Properties:
Rotation
G

Rotating flx.%) by an angle B, rotates Flu.v) by the same angle
expressing the variables in polar coordinates

x=rcosfl, v=rsin@, u=wcosd, v=wsng
substitution leads to

f(r,0+8,) ¢ F(w,0+8,)

Properties:
Translation
.
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Properties:
Distributivity
G

= fhe Fourier ransform and its inverss are distribulive owar addition but not
ower multiplication:
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Properties:
Periodicity
G

= discrete Fourier transfom and inverse are pedodic with period N

Fluvi=Flu+ N vi=Fluv+ Ni=Fin+ Nov+ N)

Slow Fourier transform:
DFT in matrix form
.
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Na j uux
F(u) =& i f(x)e?
e Note: u=Ax form! Inverse:  ATa

e O(n"2) due to matrix mult ® ¥

Fast Fourier Transform, FFT

. |
e Recall DFT:
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DFT vs FFT time comparison
c

e DFT: F=Af

e O(n"2) time complexity

e FFT: F(0..255) = F(0,2,...,254)+eF(1,3,...,255)
e S0 F(256)->2xF(128)->4xF(64)->...->256XxF(1)
e In general: O(nlogn) time complexity




Convolution
.

e Like an inner product, but with g reversed.

x R i
e Def: f(x)agx) = f(&)g(xae)de
(Gonzalez 3.3.23) at
e Theorem: =(fag) =FG

e Convolution integral -> Point wise multiplication!!

e Discrete: FFT+Convolution theorem = fast
convolutions.

Convolution example

Discrete convolution

]
e Gonzalez 3.3.29

NR1
fx)agx) = f(é)(xaée)

&6=0
e Can also be written with a circulant matrix, e.g.:
" " “1 110 0v-0~ -1~
1 1 01 1 10 0 2
1 4 1 = §O 0 1 1 1z§12 = §3z
1 1 1 0 0 1 1 1 2

1 1 0 0 1 1 1

Convolution: Applications
G

e Models many physical processes like lens and
diffraction distortion/degradation.

e Can also be used to “undo” degratation in
image enhancement.

e Basic operation in shift invariant linear
systems.

e (Used to describe generalized functions)




Practical discrete FFT-convolution
.|
Let x=[1,2,3,2,1], y=[1,1,1]
Pad to: x=[0,1,2,3,2,1,0,0], y=[0,0,1,1,1,0,0,0]
Compute FFT-> X, Y
Compute pointwise product-> XY=2Z
. Compute IFFT(2)
(Result hopefully =[1,3,6,7,6,3,1,0])
e Note need n=2"k for FFT
e Pad with zeros to avoid overlap and get 2k
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