

Assignment

- Heard concerns about long time between turn in and demo; matlab problems
- Consider:
 - New due date Tue Oct 9, 17:00 at start of lab
 - Everyone has to demo in Tue or Thu section or make individual appointment with TA

Roberts basis i	in matlab
• Basis: W1 = 1/2*[1 1 1 1];	• Test region: CR = [5 5 5 5];
W2 = 1/sqrt(2)*[0 1 -1 0];	<pre>% Coefficients: c1 = sum(sum(W1.*CR)) % c1 = 10</pre>
W3 = 1/sqrt(2)*[1 0 0 -1];	c2 = sum(sum(W2.*CR)) % c2 = 0
W4 = 1/2*[-1 1 1 -1];	% Do same for W3 and W4

Better way to implement: Use matrix algebra!								
 Construct basis matrix B = [W1(:)' W2(:)' W3(:)' W4(:)'] Flatten the test area: CRf = CR(:) 	 Test2: Step edge: SE = [-1 1 -1 1] SEf = SE(:) NewCoordSE = B*SEf % =(0,1.41,-1.41,0)' Verify that we can 							
 Compute coordinate change: NewCoord = B*CRf % = (10,0,0,0)' 	<pre>transform back: SEtestf =B'*NewCoordSE reshape(SEtestf, 2, 2) % SEtest = % -1.0000 1.0000 % -1.0000 1.0000</pre>							

		ana ang tang tang tang tang tang tang ta	10	10	10	
Consider the intensity neighborhood N =			10	10	5	
			10	5	5	
we find the component of as before. Since the basis of the component energie the components.	this v is cer s and	ector along each thonormal, the the structure o	tota z N	al îm I can	etor usi age ener be inter	ng the dot produc gy is just the sun preted in terms o
$N \diamond W_1$		$\frac{5+5\sqrt{2}}{\sqrt{8}} ~\approx~$	4.3;	ети	rgy ≈ 1	8
$N \circ W_2$	П	$\frac{5+5\sqrt{2}}{\sqrt{8}} \approx -$	4.3;	e716	$rgy \approx 1$	8
$N \circ W_3$	-	0; evergg =	0			
$N \diamond W_4$	=	$\frac{5\sqrt{2}-10}{\sqrt{8}} \approx$	-	1; e	nerzy a	1
$N \circ W_B$	=	0; evergg =	0			
$N + W_0$	-	2.5; energy	N 6			
$N \circ W_2$	=	2.5; energy	w 6			
$N \diamond W_8$	1	0; energy =	0			
$N \diamond W_k$	-	25: energy =	= 62	5		