

		Full projection model													
		p _{ca}	me	• (Camera ir parameter 1278:6657 0 0			nternal 's 0 1659:5688 0			 Camera projecti 256 1 0 240 0 1 1 0 0 			a ion 0 0 • 0 0 1 0	
- Be	0:98 0 0:17 0	35 74) 1))	à 0:174 0 0:985 0	0 • 0 6 1	⊂1 ₿0 0	0 1 0 0	0 0 1 0	16 6 à 9 1	. ⊂ 8₿	0:6612 à 10:55 108:0 1	ƙ	=	22262 ! 16755 97:47	

The fundamental model for weak
perspective projection
$$\begin{pmatrix} U \\ V \\ W \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & f/Z * \begin{pmatrix} X \\ Y \\ Z \\ T \end{pmatrix}$$

Camera Model Structure Assume R and T express camera *in world coordinates, then* ${}^{c}p = \begin{pmatrix} R' & -R'T \\ 0 & 0 & 1 \end{pmatrix} {}^{\nu}p$ Combining with a weak perspective model (and neglecting internal parameters) yields ${}^{c}u = M''p = \begin{pmatrix} -R'_{x} & R'_{x}T \\ -R'_{y} & R'_{y}T \\ 0 & R_{x}(\overline{P} - T) \\ f \end{pmatrix} {}^{\nu}p$ Where \overline{P} is the nominal distance to the viewed object

Other Models

- The *affine camera* is a generalization of weak perspective.
- The *projective camera* is a generalization of the perspective camera.
- Both have the advantage of being linear models on real and projective spaces, respectively.

Camera calibration

Issues:

- what are intrinsic parameters

- of the camera? - what is the camera matrix?
- (intrinsic+extrinsic)General strategy:
- view calibration object
- identify image points
- obtain camera matrix by
- minimizing error
- obtain intrinsic parameters from camera matrix

- Error minimization: – Linear least squares
 - easy problem numerically
 - solution can be rather bad
 - Minimize image distance
 - more difficult numerical problem
 - solution usually rather good, but can be hard to find

 start with linear least squares
 - Numerical scaling is an issue

6