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Remember: )
Affine Geometric Transforms
\ \

In general, a point in n-D space transforms by
P’ = rotate(point) + translate(point)

In 2-D space, this can be written as a matrix equation:

ax'0_a80s(q) - Sin(Q)gexy atx§
€5 Esn@) cos) Evp Evp

In B-D space (or n-D), this can generalized as a matrix equation:

p=Rp+T or p=R((P-T)
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A Simple 2-D Example

a'6_akos(p/4) - Sn(p/4)edo
&5 Esinp/4) Cos(p/4) 205
ae<'9_aéios(p/4)9
Vo &Sin(p/4) g

a&X'0_a€os(p/4) - Sin(p /486

Suppose we rotate the co?)rdinate Yo Sin(p/4)  Cos(p/4) 2
system through 45 degrees (note aX'0 a Sn(p/4)6
that this is measured relative to the == =
rotated system! Y'g &Cos(p/4) g

bRemember:
Homogeneous coordinates

e The Homogeneous coordinate corresponding to the

point (x,y,z) is the triple (X, Y1, Z,, W) where:
Xy = WX
Yo = Wy
Z, = Wz

We can (initially) set w = 1.

e Suppose a point P = (x,y,z,1) in the homogeneous
coordinate system is mapped to a point
P'=(xy',z',1) by a transformations, then the
transformation can be expressed in matrix form.




LMatrix representation and
Homogeneous coordinates

eFor the basic transformations we have:

-Translation =y~ =1 0 0 T,”~x~
)_6Y'Z_60 1 0 T,ZGy
F’_gzﬂg_go 01 Tiggzg

w 00 0 1 w

- Scaling XY s, 0 0 07"x~
\_6Y'Z_60 s, 0 0Zgy
P—gzgg_ﬁo Oy SZ Oggzg

w 0 0 0 1 w
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Geometric Transforms

Using the idea of homogeneous transforms,
we can write:

.2 R To
P §o 00 1,3'0

R and T both require 3 parameters.

cos® asin® 0% cos+ 0 sin+ 1 0 0
R= sin cos= 04 0 1 0 540 cos asin 5
0 0 1 asint 0 cos+ 0 sin cos
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Geometric Transforms

If we compute the matrix inverse, we find that
5= & R - RTY,
go 00 1 4

R and T both require 3 parameters. These correspond
to the 6 extrinsic parameters needed for camera calibration

H%e%aﬂeﬂﬁbewra%pegfied AXis

e Itis useful to be able to rotate about any axis in
3D space

e This is achieved by composing 7 elementary
transformations (next slide)




Rotation through g a@ut Specified
AXxis

Yy p2 y y
P1
X X X
z Z " fanslate P1 z @rotate so that

initial position to origin P2 lies on z-axis
(2 rotations)

y y P2

y
P1
X X y
7 rotate through rotate axis
requ'dangle,q * z translate back
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Comparison:

f to orig orientation

e Homogeneous coordinates

- Rotations and translations are represented in a
uniform way

- Successive transforms are composed using matrix
products: y = Pn*..*P2*P1*x
e Affine coordinates
- Non-uniform representations: y = Ax + b
- Difficult to keep track of separate elements

The equation of projection

e Cartesian coordinates:
- We have, by similar triangles, that (x, y, z) ->
(fx/z, fylz, -f)
- Ignore the third coordinate, and get
y
)

xy,2)® (12,12
z z
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The camera matrix

e Homogenous coordinates for 3D

- four coordinates for 3D point

- equivalence relation (X,Y,Z,T) isthe sameas (kX,kY,kZkT)
e Turn previous expression into HC's

- HC's for 3D point are (X,Y,Z,T)

- HC's for point in image are (U,V,W)
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Orthographic projection
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The fundamental model for
orthographic projection

&Xo

@6 @ 0 0 05,
gvi=go 1 0 oz,
c =S T
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bPerspective and Orth&graphic
Projection

perspective Orthographic
(parallel)

Weak ti N X
eak perspective

V= |y
e |ssue T= f/Z

- perspective effects, but
not over the scale of
individual objects

- collect points into a group
at about the same depth,
then divide each point by
the depth of its group

- Adv: easy

- Disadv: wrong




bThe fundamental mo&l for weak
perspective projection
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Camera parameters

e |ssue
- camera may not be at the origin, looking down the z-
axis
e extrinsic parameters
- one unit in camera coordinates may not be the same
as one unit in world coordinates

e intrinsic parameters - focal length, principal point, aspect
ratio, angle between axes, etc.

2 o aJransformation  gagdransformation ¢ed ransformation cgi: 2
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Wy Sintrinsic parameters gprojection model g&extrinsic paramaers,zg
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Intrinsic Parameters

Intrinsic Parameters describe the conversion from
metric to pixel coordinates (and the reverse)

Xnm = - (Xpix - Ox) Sy
m=" (ypix - Oy) Sy

or
a0 e fls 0 0, (eX 0
¢+ _¢C T oE
¢y= =¢ O B f/Sy Oy"f(}yf =M, p
g g0 0 1 &Wg

Camera Model Structure
Assume R and T express camera in world coordinates, then
. R -RT
p= 8” p
000 14

Combining with a perspective model (and neglecting internal
parameters) yields
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Note the M is defined only up to a scale factor at this point! If M is
viewed as a 3x4 matrix defined up to scale, it is called the projection
matrix.




Camera Model Structure

Assume R and T express camera in world coordinates, then
cp=® R -RTY,
go 00 1 4

Combining with a weak perspective model (and neglecting internal
parameters) yields

e R, R,T o]

¢ o =
) &R, RT x
u=M“Io=g 0 R(P-T) P

oz
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Where P is the nominal distance to the viewed object
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Other Models

e The affine camera is a generalization of weak
perspective.

e The projective camera is a generalization of the
perspective camera.

e Both have the advantage of being linear models on
real and projective spaces, respectively.
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Camera calibration

e |[ssues: e Error minimization:

- what are intrinsic parameters - Linear least squares
of the camera?

- what is the camera matrix?
(intrinsic+extrinsic)
e General strategy:

e easy problem numerically

e solution can be rather bad
- Minimize image distance

e more difficult numerical

- view calibration object problem

- identify image points e solution usually rather good,

- obtain camera matrix by but can be hard to find
minimizing error - start with linear least

— obtain intrinsic parameters squares

from camera matrix — Numerical scaling is an issue
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Geometric properties of projection

e Points go to points

e Lines go to lines

e Planes go to whole image
e Polygons go to polygons

° Degenerate cases
- line through focal point to
point
- plane through focal point
to line




b >

Polyhedra project to polygons

e (because lines project to
lines)
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