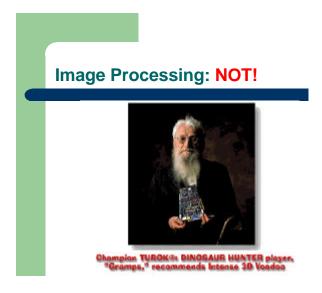
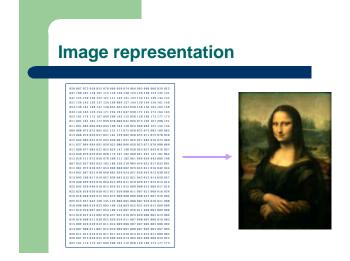
Introduction to Image Processing Cmput306 Martin Jagersand

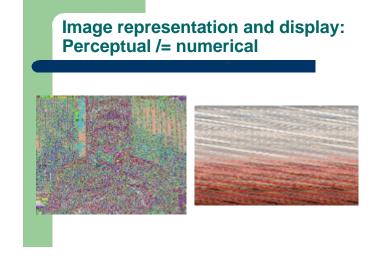
Image Processing: What is it?

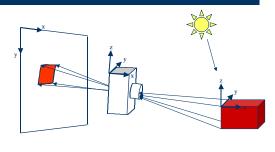
- How to represent, store and display images.
- How images are captured
- Image transforms
- Image filtering, enhancement and restoration
- Image compression

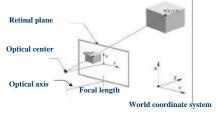
Related Computation with images:


- Improving or changing images and movies (image and video processing)
- 2. analyzing images and movies (computer vision)
- Finding desired images or movies (image indexing and databases)
- 4. Acting based on visual information (robotics, vision based HCI)
- 5. Generating images and movies (graphics and animation)
- 6. Any others????

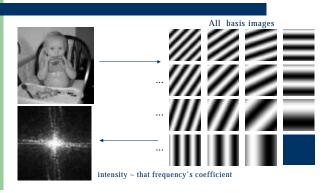

Image Processing: NOT!


"How can I use Corel PhotoPaintTM to turn the sky green?"


Image Processing: NOT!



How the 3D physical world is captured on a 2D image plane



How the 3D physical world is captured on a 2D image plane

Pinhole camera model

Fourier transform:

Mathematically: Discrete FT in matrix form

$$\begin{bmatrix} F(0) \\ F(2) \\ \vdots \\ F(N-1) \end{bmatrix} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & e^{\frac{j2\pi}{N}} & & e^{\frac{j2\pi(N-1)}{N}} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & e^{\frac{j2\pi(N-1)^2}{N}} \end{bmatrix} \begin{bmatrix} f(0) \\ f(2) \\ \vdots \\ f(N-1) \end{bmatrix}$$

$$F(\mathbf{u}) = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) e^{-\frac{j2\pi ux}{N}}$$
 • Note: u=Ax form! Inverse: A^{T*}

Filtering: High Pass

- Sharp cutoff frequency
- Why is filtered image so dark??

Example: F-t based restoration

Unfocused image

Restored image

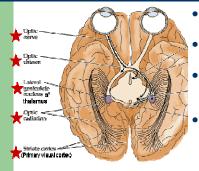


Image Compression: jpeg

- 8x8 DCT transform (as defined in the previous lecture)
- Q: Quantization of DCT coefficients
- Predictive coding (DC) or Zig-Zag scan (AC) of Quantized DCT coefficients
- Variable length coding of the quantized AC and DC coefficients
- Decoding performs operations in reverse

Biological Image Processing

- Eye transforms light into nerve impulses
- Optic chiasm splits left and right visual fields
- LGN: Exact function unknown. May have to do with stereo.
- V1 (Striate cortex) performs spatial filtering / coordinate transforms

Outlook: Visual Computing

Administrativia

- Text: Gonzalez and Woods "Digital Image Processing" + on-line material provided.
- Homework: 4 labs and exercises.
 - 45% of grade
- Exams:
 - Midterm 20%,
 - Final 35%

Administrativia

- Instructor: Martin Jagersand
 - Email: c306@ugrad.cs.ualberta.ca
 - Office hours M,W after class.
- TAs:
 - Keith Yerex, keith@cs.ualberta.ca
 - Neil Birkbeck, birkbeck@cs.ualberta.ca
 - Aloak Kapoor, aloak@cs.ualberta.ca
- Course newsgroup: c306
- Course WWW pages:
 - ugweb.cs.ualberta.ca/~c306

Labs and Exercises

- Practical labs will use Matlab and digital video (No scheduled labs in the first week)
- Location: CSC building, advanced syst lab (You can also access matlab on ohaton)
- Theoretical exercises of math type.
 (Brush up on linear algebra, calculus and statistics)