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Visual Place Recognition
(a.k.a. Loop Closure
Detection)
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Visual loop closure detection
(a.k.a. visual place recognition)
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Pose-Graph SLAM

* Topological map of key locations, each of which is
described by sensory measurements (e.g., laser

scan, images) at that location: .
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Pose-Graph SLAM

* Mapping: visual sampling of 4
environment
* Key location or key frame detection
* Loop closure detection (LCD) by
matching images
* Localization = LCD

* Metric information from “pose-graph 7
SLAM”

* Calculate robot poses from odometry and 8
loop closures
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Challenges in visual place recognition
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BoW representation is a histogram of word
frequencies, and this histogram can be used a
descriptor vector.
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Visual loop closure detection with a compact image
descriptor

Y Liu, H Zhang - 2012 IEEE/RSJ International Conference on ..., 2012 -
ieeexplore.ieee.org

In this paper, we present a method for visual loop closure detection using a compact
image descriptor, Gabor-Gist. In contrast to the Bag-of-Words (BoW) approach, which is
dominant in recent studies of the loop closure detection problem that derives an image
descriptor from locally extracted keypoint descriptors, our method relies on a single
efficient image descriptor of low dimension to describe and measure similarities among
images. We employ PCA to transform a high dimensional Gabor-Gist descriptor to a
lower dimensional form to ...
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Viewpoint Invariance via
Feature ConvNet Landmark Representation
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BoCNF:

Efficient Image Matching with Bag of
ConvNet Features for Scalable and

Robust Visual Place Recognition

Yi Hou Hong Zhang
National University of University of Alberta,
Defense Technology, China Canada
yihouhowie@gmail.com hzhang@ualberta.ca
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BoCNF: LCD accuracy
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BoCNF: matching efficiency
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" Yi Hou, Hong Zhang, and Shilin Zhou, “BoCNF:
OC Efficient Image Matching with Bag of ConvNet

1 Features for Scalable and Robust Visual Place
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Hou Y, Zhang H, Zhou S. “BoCNF: Efficient image matching with bag of ConvNet features for
scalable and robust visual place recognition”, Autonomous Robots, 42(6), August 2018.
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