
1

Sorting - Merge Sort

Cmput 115 - Lecture 12

Department of Computing Science

University of Alberta

©Duane Szafron 2000
Some code in this lecture is based on code from the book:

Java Structures by Duane A. Bailey or the companion structure package

Revised 12/03/02

©Duane Szafron 1999

2

About This Lecture

� In this lecture we will learn about a sorting
algorithm called the Merge Sort.

� We will study its implementation and its
time and space complexity.

2

©Duane Szafron 1999

3

Outline

� Merge: combining two sorted arrays
� Merge algorithm
� Time and Space complexity for Merge

� The Merge Sort Algorithm
� Merge Sort - Arrays
� Time and Space Complexity of Merge Sort

©Duane Szafron 1999

4

Merging Two Sorted Arrays

� Merge is an operation that combines two
sorted arrays together into one.

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40 50 60 70 80 90
0 1 2 3 4 5 6

merge

3

©Duane Szafron 1999

5

Merge Algorithm – initial version
	 For now, assume the result is to be placed in a

separate array called result, which has already
been allocated.

 The two given arrays are called front and back
(the reason for these names will be clear later).

� front and back are in increasing order.

� For the complexity analysis, the size of the input, n,
is the sum nfront + nback

©Duane Szafron 1999

6

Merge Algorithm

 For each array keep track of the current position

(initially 0).

� REPEAT until all the elements of one of the given
arrays have been copied into result :
– Compare the current elements of front and back
– Copy the smaller into the current position of result (break

ties however you like)
– Increment the current position of result and the array that

was copied from

� Copy all the remaining elements of the other given
array into result.

4

©Duane Szafron 1999

7

Merge Example (1)

Current positions indicated in red

10 40 60
0 1 2

50 70 80 90
0 1 2 3 0 1 2 3 4 5 6

Compare current elements; copy smaller; update current

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10
0 1 2 3 4 5 6

Compare current elements; copy smaller; update current

©Duane Szafron 1999

8

Merge Example (2)

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40
0 1 2 3 4 5 6

Compare current elements; copy smaller; update current

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40 50
0 1 2 3 4 5 6

Compare current elements; copy smaller; update current

5

©Duane Szafron 1999

9

Merge Example (3)

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40 50 60
0 1 2 3 4 5 6

Copy the rest of the elements from the other array

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40 50 60 70 80 90
0 1 2 3 4 5 6

©Duane Szafron 1999

10

Merge Code – version 1 (1)

private static void merge(int[] front, int[] back,
int[] result, int first, int last) {

// pre: all positions in front and back are sorted,
// result is allocated,
// (last-first+1) == (front.length + back.length)
// post: positions first to last in result contain one copy
// of each element in front and back in sorted order.
int f=0 ; // front index
int b=0 ; // back index
int i=first ; // index in result
while ((f < front.length) && (b < back.length)) {
if (front[f] < back[b]) {

result[i] = front[f] ;
i++ ; f++ ;

} else {
result[i] = back[b] ;
i++ ; b++ ;

}
}

6

©Duane Szafron 1999

11

Merge Code – version 1 (2)

// copy remaining elements into result

while (f < front.length) {
result[i] = front[f]
i++ ;
f++ ;

}
while (b < back.length) {

result[i] = back[b] ;
i++ ;
b++ ;

}
}

©Duane Szafron 1999

12

Merge – complexity
� Every element in front and back is copied

exactly once. Each copy is two accesses, so the
total number of accesses due to copying is 2n.

� The number of comparisons could be as small as
min(nfront,nback) or as large as (n-1). Each
comparison is two accesses.

� In the worst case the total number of accesses is
2n+2(n-1) = O(n).

� In the best case the total number of accesses is
2n+ 2*min(nfront,nback) = O(n)

� The average case is between the worst and best
case and is therefore also O(n).

� Memory required: 2n = O(n)

7

©Duane Szafron 1999

13

Merge Sort Algorithm
� Merge Sort sorts a given array (anArray) into

increasing order as follows:
� Split anArray into two non-empty parts any way

you like. For example
front = the first n/2 elements in anArray

back = the remaining elements in anArray
� Sort front and back by recursively calling

MergeSort with each one.
� Now you have two sorted arrays containing all

the elements from the original array. Use merge
to combine them, put the result in anArray.

©Duane Szafron 1999

14

Merge Sort – (1) Split

40 60 10 90 50 80 70
0 1 2 3 4 5 6

40 60 10
0 1 2

90 70 80 90
0 1 2 3

8

©Duane Szafron 1999

15

Merge Sort – (2) recursively sort front

10 40 60
0 1 2

40 60 10
0 1 2

90 70 80 90
0 1 2 3

40 60 10 90 50 80 70
0 1 2 3 4 5 6

mergesort(front)

©Duane Szafron 1999

16

Merge Sort – (3) recursively sort back

10 40 60
0 1 2

50 70 80 90
0 1 2 3

40 60 10
0 1 2

90 70 80 90
0 1 2 3

40 60 10 90 50 80 70
0 1 2 3 4 5 6

mergesort(back)

9

©Duane Szafron 1999

17

Merge Sort – (4) merge

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40 50 60 70 80 90
0 1 2 3 4 5 6

merge

40 60 10
0 1 2

90 70 80 90
0 1 2 3

40 60 10 90 50 80 70
0 1 2 3 4 5 6

Final resultOriginal array

©Duane Szafron 1999

18

Merge Sort Algorithm - summary

10 40 60
0 1 2

50 70 80 90
0 1 2 3

10 40 50 60 70 80 90
0 1 2 3 4 5 6

merge

40 60 10
0 1 2

90 70 80 90
0 1 2 3

40 60 10 90 50 80 70
0 1 2 3 4 5 6

Final resultOriginal array

Recursively sort each part

10

©Duane Szafron 1999

19

MergeSort Code – version 1

public static void mergesort(int[] anArray, int first,
int last) {

//pre: last < anArray.length
//post: anArray positions first to last are in increasing order
int size = (last-first)+1 ;
if (size > 1) {
int frontsize = size/2 ;
int backsize = size-frontsize ;
int[] front = new int[frontsize] ;
int[] back = new int[backsize] ;
int i;
for (i=0; i < frontsize; i++) { front[i] = anArray[first+i]; }
for (i=0; i < backsize; i++) { back[i] =

anArray[first+frontsize+i]; }
mergesort(front,0,frontsize-1);
mergesort(back, 0,backsize -1);
merge(front,back,anArray,first,last) ;
}

}

©Duane Szafron 1999

20

MergeSort Call Graph (n=7)

0-2

0-0 1-2

1-1 2-2

3-6

3-4

3-3

5-6

4-4 5-5 6-6

0-6
lastfirst

How many levels are there, in general,
if the array is divided in half each time ?

Each box represents
one invocation of the
mergesort method.

11

©Duane Szafron 1999

21

MergeSort Call Graph (general)

n/2

n/4 n/4

n/2

n/4 n/4

1 1

n
of positions to sort

1 1 1 11 1

Suppose n=2k .
How many levels ?

What value is in
each box at level j?

How many
boxes on
level j ?

©Duane Szafron 1999

22

MergeSort – complexity analysis (1)
� Each invocation of mergesort on p array

positions does the following:
� Copies all p positions once (# accesses = O(p))
� Calls merge (#accesses = O(p))

� Observe that p is the same for all invocations at
the same level, therefore total # of accesses at a
given level j is O((#invocations at level j)*pj)

12

©Duane Szafron 1999

23

MergeSort – complexity analysis (2)
� The total # of accesses at level j is

O((#invocations at level j)*pj)
= O(2j * (n/2j))
= O(n)

� In other words, the total # of accesses at each level
is the same, O(n)

 The total # of accesses for the entire mergesort is
the sum of the accesses for all the levels. Since the
accesses at every level is the same – O(n) – this is

(# levels)*O(n)
= O(log(n))*O(n)
= O(n*log(n))

©Duane Szafron 1999

24

Time Complexity of Merge Sort

! Best case - O(n log(n))
" Worst case - O(n log(n))
Average case O(n log(n))
$ Note that the insertion sort is actually a

better sort than the merge sort if the
original collection is almost sorted.

13

©Duane Szafron 1999

25

Space Complexity of Merge Sort (1)
% In any recursive method, space is required for the

stack frames created by the recursive calls.

& The maximum amount of memory required for
this purpose is
(size of the stack frame) * (depth of recursion)

' The size of the stack frame is a constant, and for
mergesort the depth of recursion (the number of
levels) is O(log(n)).

(The memory required for the stack frames is
therefore O(log(n)).

©Duane Szafron 1999

26

Space Complexity of Merge Sort (2)
) Besides the given array, there are two temporary

arrays allocated in each invocation whose total
size is the same as the number of positions to be
sorted: at level j this is pj = n/2j

* This space is allocated before the recursive calls
are made and needed after the recursive calls
have returned and therefore the maximum total
amount of space allocated is the sum of n/2j for
j=0…log(n).

+ This sum is O(n) – it is a little less than 2*n.
, Therefore, the space complexity of Merge Sort is

O(n), but doubling the collection storage may
sometimes be a problem.

14

©Duane Szafron 1999

27

Making mergesort faster

- Although we cannot improve the big-O
complexity of mergesort we can make it
faster in practice by doing two things:
– Reducing the amount of copying
– Allocating temporary storage once at the very

outset

. We will make these improvements in 2 steps.

©Duane Szafron 1999

28

Reducing copying - back

/ The back array is easy to eliminate. We just
use the back portion of anArray in its
place.

0 The only significant change in the code is
to the merge method, which now must be
told where the “ back” of anArray begins.

1 We can also eliminate from merge the final
loop which copies values from back into
the final positions of anArray since these
will be in the correct place in anArray.

15

©Duane Szafron 1999

29

MergeSort Code – version 2 (1)

public static void mergesort(int[] anArray, int first,
int last) {

//pre: last < anArray.length
//post: anArray positions first to last are in increasing order
int size = (last-first)+1 ;
if (size > 1) {
int frontsize = size/2 ;
int backsize = size-frontsize ;
int[] front = new int[frontsize] ;
int[] back = new int[backsize] ;
int i;
for (i=0; i < frontsize; i++) { front[i] = anArray[first+i]; }
for (i=0; i < backsize; i++) { back[i] =

anArray[first+frontsize+i]; }
mergesort(front,0,frontsize-1);

--

--

©Duane Szafron 1999

30

MergeSort Code – version 2 (2)

mergesort(back, 0,backsize -1);

int backstart = first + frontsize;
mergesort(anArray, backstart, last);

merge(front,back,anArray,first,last) ;

merge(front, anArray, first, backstart, last);

}
}

--

16

©Duane Szafron 1999

31

Merge Code – version 2 (1)

private static void merge(int[] front,
int[] anArray, int first, int backstart,
int last) {

int f=0 ; // front index
int b=backstart ; // back index
int i=first ; // index in result
while ((f < front.length) && (b <= last)) {
if (front[f] < anArray[b]) {

anArray[i] = front[f] ;
i++ ; f++ ;

} else {
anArray[i] = anArray[b] ;// i <= b ALWAYS AT THIS POINT
i++ ; b++ ;

}
}

©Duane Szafron 1999

32

Merge Code – version 2 (2)

// copy remaining elements into result (anArray)

while (f < front.length) {
anArray[i] = front[f]
i++ ;
f++ ;

}
while (b < back.length) {

anArray[i] = back[b] ; // i==b ALWAYS AT THIS POINT
i++ ;
b++ ;

}
}

X

17

©Duane Szafron 1999

33

Improving efficiency – front (1)

2 front is as easy to eliminate as back in the
mergesort method. We just use the front
portion of anArray in its place.

3 But the merge method must make a copy of
the front portion of anArray before
merging begins.

4 This does not reduce copying at all, but it
moves the temporary storage into the
merge method, which means it is allocated
AFTER the recursive calls and therefore
less memory is needed in total.

©Duane Szafron 1999

34

Improving efficiency – front (2)

5 In addition, instead of allocating the storage
each time merge is called, we can allocate it
once, before the first call to mergesort is
made, and pass this extra array on all calls.

6 This saves the time it takes to allocate
memory and garbage collect it, which in the
previous versions was done once for every
invocation.

