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Abstract. A memory-based heuristic is a function, h(s), stored in the
form of a lookup table: h(s) is computed by mapping s to an index and
then retrieving the corresponding entry in the table. In this paper we
present a notation for describing state spaces, PSVN, and a method for
automatically creating memory-based heuristics for a state space by ab-
stracting its PSVN description. Two investigations of these automatically
generated heuristics are presented. First, thousands of automatically gen-
erated heuristics are used to experimentally investigate the conjecture by
Korf [4] that m-¢ is a constant, where m is the size of a heuristic’s lookup
table and ¢ is the number of nodes expanded when the heuristic is used
to guide search. Second, a similar large-scale experiment is used to verify
that the Korf and Reid’s complexity analysis [5] can be used to rapidly
and reliably choose the best among a given set of heuristics.

1 Introduction

In this paper we describe a method for automatically creating heuristics from
a description of a search space. The aim of this research is twofold. On the
practical side, it is often difficult to generate good, provably admissible heuristics
for a new search space. Our method is fully automatic and is guaranteed to
generate monotone heuristics. On the scientific side, our method enables large-
scale experiments to study properties of heuristics. For this purpose it is essential
to create not just one heuristic for a search space, but many different ones whose
properties can be controlled more or less directly by the experimenter. In this
way general hypotheses about heuristics can be investigated experimentally.

Our general approach to automatically creating heuristics is to alter the descrip-
tion of the given search space, S, to create a description of a “simpler” search
space, S’, in such a way that (1) for every state in S, there is a corresponding
state in S’, and (2) the distance between any two states in S, is greater than
or equal to the distance between the corresponding states in S’. A space with
these two properties is called an abstraction of the original space [6]. Any ab-
straction of S gives rise to a monotone heuristic for searching in S: the distance



between states s; and sy in S can be estimated by the exact distance between
the corresponding states in S”.

For the purposes of automatically generating a wide variety of heuristics from a
single search space description, and for having fine control over certain key fea-
tures of the heuristics, we have found it useful to devise our own representation
language, PSVN. To date we have studied one method of creating abstractions
in PSVN, which we call domain abstraction. PSVN with domain abstraction gen-
eralizes the notion of pattern database [1]. Once the abstract space is created,
the distance-to-goal for the entire abstract space is precomputed and stored in a
lookup table with one entry for each abstract state. A heuristic represented by
such a lookup table we call a memory-based heuristic.

The attraction of memory-based heuristics is that they enable search time to
be reduced by using more memory. Korf [4] conjectures that memory (m) and
time (¢) can be directly traded off, i.e., that the product m -t is a constant. This
conjecture is important because if it is true search time can be halved simply by
doubling available memory. In section 4.1 we test this conjecture in a large-scale
experiment in which thousands of heuristics having a wide variety of memory
requirements are evaluated. In section 5, a similar large-scale experiment is used
to verify that the complexity analysis of search heuristics by Korf and Reid [5]
can be used to rapidly and reliably choose the best among a given set of memory-
based heuristics. Thus we can automatically generate a good heuristic for a novel
search space by randomly generating a large set of heuristics and using Korf and
Reid’s method to select the best among them.

2 State Space Representation

To facilitate the automatic generation of many different abstractions of widely
varying granularity, we use a simple vector notation for states and operators.
A state is represented by a fixed length vector of labels from a finite set L
called the domain. An operator is represented by a left-hand side (LHS) and
right-hand side (RH S), each a vector the same length as the state vectors. Each
position in the LHS and RHS vectors may be a constant (a label from L),
a variable, or an underscore (_). The variables in an operator’s RHS must also
appear in its LHS. An operator is applicable to state s if its LH S can be unified
with s. The act of unification binds each variable in LHS to the label in the
corresponding position in s. Underscores in the LH S act as “don’t cares”. The
RH S describes the state that results from applying the operator to s. The RH S
constants and variables (now bound) specify particular labels and an underscore
in a RH S position indicates that the resulting state has the same value as s in
that position. For example,

<A/A1,,B,C>—<2___CB>

is an operator that can be applied to any state whose first two positions have
the same value and whose third position contains 1. The effect of the operator



is to set the first position to 2 and exchange the labels in the last two positions;
all other positions are unchanged.

A state space is defined by a triple S =< s9,0, L >, where s¢ is a state, called
the seed state, O is a set of operators, and L is a finite set of labels. The state
space is the transitive closure of sy and the operators, i.e., it consists of all
reachable states from sy by any sequence of operators.

We call this notation PSVN (“production system vector notation”). Although
simple, it is expressive enough to specify succinctly all finite permutation groups
(e.g. Rubik’s Cube) and the common benchmark problems for heuristic search
and planning (e.g. sliding tile puzzles).

3 State Space Abstraction

A domain abstraction is a map ¢ : L — K, where L and K are sets of labels
and |K| < |L|. A state space abstraction is induced by a domain abstraction by
applying ¢ to the seed state and the operators: S’ = ¢(S) =< &(so), #(0), K >.
The action of ¢ on an operator is to relabel the constants appearing in the
operator. The abstract state space is defined to be the transitive closure of ¢(O)
and ¢(so) — the set of states reachable from ¢(so) by applying operators in ¢(O).
This definition extends the notion of “pattern” in the pattern database work [1],
which in their framework is produced by mapping several of the labels in L to a
special new label (“don’t care”) and mapping the rest of the labels to themselves.

The key property of state space abstractions is that they are homomorphisms
and therefore the distance between two states in the original space, S, is always
greater than or equal to the distance between the corresponding abstract states
in ¢(S). Thus, abstract distances are admissible heuristics for searching in S (in
fact they are monotone heuristics: for formal proofs of these assertions see [2]).

The heuristic defined by an abstraction can either be computed on demand, as
is done in Hierarchical A* [3], or, if the goal state is known in advance, the
abstract distance to the goal can be precomputed for all abstract states and
stored in a lookup table (pattern database) indexed by abstract states. In this
paper we take the latter approach. If all the operators in S are invertible, the
pattern database is constructed by an exhaustive breadth first traversal of S’
starting at the goal state, ¢(g), and using the inverses of the operators. If some
operators are not invertible, the transpose of S’ is created by a depth first forward
traversal starting from ¢(sg) and then the pattern database is constructed by
an exhaustive breadth first traversal of this explicit graph.

For special classes of search spaces a formula can be given relating an abstrac-
tion’s granularity to the memory needed for the corresponding memory-based
heuristic. But in general, the problem of estimating the size of the abstract
space is difficult. The main complication is that an abstract space can contain
an arbitrarily large number of states which have no pre-images. We call such an



abstraction non-surjective. For example, consider the 2 x 2 sliding-tile puzzle
and the domain abstraction ¢; : {0,1,2,3} — {0,1,2} defined as:

0ifz =3
¢dm:{xﬁx¢3

This abstraction has two 0’s (blank tiles) as shown in Figure 1. It is non-surjective
because there are states in ¢1(S) which have no pre-image in S. These states of
¢1(S) have dashed line boundaries in Figure 1.
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Non-surjective abstractions arise often in practice. All our attempts to represent
the Blocks World in PSVN have given rise to non-surjective homomorphisms [2].
We have identified two causes of non-surjectivity, orbits and blocks. These are
structural properties that naturally arise in problems in which the operators
move physical objects (e.g. the cubies in Rubik’s Cube) and there are constraints
on which positions an object can reach or on how the objects can move relative
to one another. We have also seen examples of other causes, but have not yet
been able to give a general characterization of them.

4 Korf’s Conjecture

A fundamental question about memory-based heuristics concerns the relation-
ship between m, the size of the pattern database for a heuristic, and ¢, the number



of nodes generated when the heuristic is used to guide search. [4] gives an in-
sightful, but informal, analysis of this relationship which leads to the conjecture
that ¢ = n/m.

The aim of our first experiment is to examine the true relationship between ¢
and m and compare it with the relationship conjectured in [4]. Our approach
is to create abstractions with different values of m and problem instances with
different values of d and measure ¢ by running A* (not IDA*) with each ab-
straction on each problem instance. This is repeated for different search spaces
to increase confidence in the generality of our conclusions. In these experiments
all the abstractions are surjective, since Korf’s conjecture is certainly false for
non-surjective abstractions.

For a given m there can be many different abstractions. 30 are generated at ran-
dom and their ¢ values averaged. t is estimated separately for “hard”, “typical”,
and “easy” problem instances using 100 randomly selected start states of each
type (the goal state is fixed for each search space). The difficulty of a problem in-
stance is determined by how its solution length compares to the solution lengths
of all other problem instances. For example, we use the median of the solution
lengths to define a “typical” problem instance.

||8-Puzzle| 8-Perm|Top-Spin|

n 181440 | 40320 40320
min m 252 56 28
max m 30240 20160 10080
b 1.667 6 2
deasy 18 5 12
dtypical 22 7 16
dpard 27 9 19

Table 1. Experiment Parameters

Results are presented (figure 2) as plots with m on the x-axis and ¢ on the
y-axis. Each data point represents the average of 3000 runs (30 abstractions,
each applied to 100 problem instances). Breadth-first search was also run on
all problem instances; it represents the extreme case when m = 1. In total,
our experiments involved solving 236,100 problem instances. In this extended
abstract we present only the results for the 8-puzzle.

We chose state spaces large enough to be interesting but small enough that such
a large-scale experiment was feasible. Table 1 gives the general characteristics
and experiment parameters for each space. Note that the m values for each space
range from very small to a significant fraction of n. Each state space is generated
by a puzzle, which we now briefly describe.



The 8-Puzzle is composed of 8 labeled sliding tiles arranged in a 3 x 3 grid. There
is one tile missing, so a neighboring tile can be slid into its place. In PSVN each
position in the vector corresponds to a particular grid position and the label
in vector[i] denotes the tile in the corresponding grid position. For example, if
vector position 1 corresponds to the upper left grid position, and vector position
2 corresponds to the upper middle grid position, the operator that exchanges a
tile in the upper left with an empty space (\) in the upper middle is

<X7A7—7—7—7—7—7—7—>_)<A7X7—7—7—7—7—7—7—>

In the N-Perm puzzle a state is a vector of length NV containing N distinct labels
and there are N — 1 operators, numbered 2 to IV, with operator k reversing the
order of the first £ vector positions. We used N = 8. In PSVN operator 5, which
reverses the first 5 positions, is represented

<A?‘B?C?D?E?—?—?—>_)<E7D7C7B7A7—7—7—>

The (N,K)-Top-Spin puzzle has N tokens arranged in a ring. The tokens can
be shifted cyclically clockwise or counterclockwise. The ring of tokens intersects
a region K tokens in length which can be rotated to reverse the order of the
tokens currently in the region. We used N = 8 and K = 4, and three operators
to define the state space

<I1,J,K,L,M,N,0,P>—<J,K,L,M,N,0,P,I>

<I,J,K,L,M,N,0,P >—< P,1,J,K,L,M,N,O >
<A7B7C7D7—7—7—7—> g <D7C7B7A7—7—7—7—>

4.1 Experimental Results

Figure 2 shows the experimental results for the 8-puzzle with m on the x-axis
and ¢ on the y-axis. The scale on both axes is logarithmic but the axes are labeled
with the actual m and ¢ values. With both scales logarithmic ¢ - m = constant
¢, the conjecture in [4], would appear as a straight line with a slope of —1. Note
that the y-axis is drawn at m = 252, not at m = 0.

In Figure 2 a short horizontal line across each line (at around m = 4000) indi-
cates the performance of the Manhattan Distance on the 8-puzzle test problem
instances. This shows that randomly generated abstractions of quite small size
(5040 entries, less than 3% of the size of the state space) are as good as one of
the best hand-crafted heuristics known for the 8-puzzle. The best of these ran-
domly generated heuristics expands about 30% fewer nodes than the Manhattan
distance.

A linear trend is very clear in all the results curves. The correlation between the
data and the least squares regression line is 0.99 or higher in every case. However,
the slope is not —1. These results therefore strongly suggest that ¢-m® = constant
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Fig. 2. 8-Puzzle: Number of States Expanded [t] vs Size of Pattern Database [m].

¢ for a between —0.57 and —0.8. o in this range means that doubling the amount
of memory reduces the number of nodes expanded by less than a factor of 2.

Despite the very high correlation with a straight line, it appears that the top
curves in each plot, and the middle curves to a lesser extent, are slightly bowed
up, ¢.e., that for problem instances with long solutions the effect on ¢ of increasing
m depends on the value of m, with a greater reduction in ¢ being achieved when
m is large. The reason for the flattening out of the curves as they approach
m = 1 is a decrease in the effective branching factor as A* expands more states.
A* caches all the states it generates. Search guided by a very small pattern
database will generate a significant portion of the search space, and the more
states generated the higher the chance that a freshly generated state is already
in the cache. If plotted the effective branching factor of the 8-puzzle is seen to
drop sharply as the size of the pattern database, m, decreases below 1000.

Figure 3 plots the average number of nodes expanded for every possible abstrac-
tion of the 8-puzzle in which the blank tile remains unique. The average is over
400 start states distance 22 from the goal state (a total of 1,392,400 problem
instances were solved). There are some very small pattern databases — one of size
9 and eight of size 72. It is clear from that plot that for the search space for start
states with distance 22 moves from the goal the linear trend continues along
the entire scale of pattern databases. The plot also shows an interesting phe-
nomenon: pattern databases of size 3024 slightly outperform pattern databases
of size 3780, hence the notch in the curve.

Figure 4 shows how the pattern databases for the 8-puzzle of all different sizes
perform on the same 400 start states. Clearly, the number of states expanded
generally decreases as the size of the pattern database increases. However it is
equally clear that there is significant overlap: the best heuristic with less memory
is often better than an average heuristic with slightly more memory. On the other
hand the range of variation for heuristics of the same size is not extremely large:



100000

d=22 -—

10000 ¢ |

- 1000 El

100 |

L
10 100 1000 10000 100000
m

Fig. 3. 8-Puzzle — All Abstractions for d = 22: Number of States Expanded [t] vs Size
of Pattern Database [m]
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the worst heuristic of any given size results in 2 to 4 times more nodes being
expanded than the best heuristic of the same size.

5 Predicting a Heuristic’s Performance

In [5] Korf and Reid develop a formula to predict the number of nodes generated,
t, as a function of parameters that can be easily estimated for memory-based
heuristics. Our reconstruction of their development, with some slight differences,
leads to an estimate of the number of nodes

d
t(b,d) =Y b'P(d—i) (1)

where b is the space’s branching factor, d is the distance from the start state to
the goal state, and P(z) is the percentage of the entries in the pattern database
that are less than or equal to z.

To verify how well equation 1 predicts the number of nodes expanded we have
run an extensive experiment with the 8-Puzzle. The average number of nodes
expanded for 400 start states (all distance 22 from the goal state) was measured
for all abstractions that keep the blank tile unique. Each point in Figure 5
represents the average number of states expanded on these start states for one
particular pattern database of size 5040. This actual number of states expanded
is the z axis, the y axis is the value predicted by equation 1. If equation 1
precisely predicted the number of nodes expanded, the points would lie on the
y = x line.
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Fig. 5. Number of States Expanded as Predicted by Equation 1 (y axis) vs. The Av-
erage of the Actual Number of States Expanded (z axis). (m = 5040)



For all sizes of heuristic the relation between the actual and predicted values
is an almost linear and certainly monotonic trend. Because of the monotonic
relation between equation 1 and the actual number of nodes expanded, equation
1 can be used to reliably determine which of two heuristics will result in fewer
nodes being expanded. The results shown here are when b and d are known
exactly, but we also have additional experiments showing the same trends when
b and d are estimated in a particular way.

6 Conclusion

In this paper we introduced a simple way of encoding problems, PSVN, in which
states are vectors over a finite domain of labels and operators are production
rules. By using PSVN domain abstractions are simple syntactic operations that
result in monotonic search heuristics. Thus heuristics can be generated automat-
ically from a state space’s PSVN description. We report large scale experiments
on moderate size search spaces to experimentally verify the relationship between
a heuristic’s memory and search effort and to predict the performance of pat-
tern databases from the estimated branching factor of the search tree and the
distribution of heuristic values in the pattern database.
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