
Experiments with Automatically Created

Memory�Based Heuristics

Istv�an T� Hern�adv�olgyi and Robert C� Holte

University of Ottawa
School of Information Technology � Engineering

Ottawa� Ontario� K�N �N�� Canada
fistvan�holteg�site�uottawa�ca

Abstract� A memory�based heuristic is a function� h�s	� stored in the
form of a lookup table
 h�s	 is computed by mapping s to an index and
then retrieving the corresponding entry in the table� In this paper we
present a notation for describing state spaces� PSVN� and a method for
automatically creating memory�based heuristics for a state space by ab�
stracting its PSVN description� Two investigations of these automatically
generated heuristics are presented� First� thousands of automatically gen�
erated heuristics are used to experimentally investigate the conjecture by
Korf �
� that m�t is a constant� wherem is the size of a heuristic�s lookup
table and t is the number of nodes expanded when the heuristic is used
to guide search� Second� a similar large�scale experiment is used to verify
that the Korf and Reid�s complexity analysis ��� can be used to rapidly
and reliably choose the best among a given set of heuristics�

� Introduction

In this paper we describe a method for automatically creating heuristics from
a description of a search space� The aim of this research is twofold� On the
practical side� it is often di�cult to generate good� provably admissible heuristics
for a new search space� Our method is fully automatic and is guaranteed to
generate monotone heuristics� On the scienti�c side� our method enables large�
scale experiments to study properties of heuristics� For this purpose it is essential
to create not just one heuristic for a search space� but many di	erent ones whose
properties can be controlled more or less directly by the experimenter� In this
way general hypotheses about heuristics can be investigated experimentally�

Our general approach to automatically creating heuristics is to alter the descrip�
tion of the given search space� S� to create a description of a
simpler� search
space� S�� in such a way that �
� for every state in S� there is a corresponding
state in S�� and ��� the distance between any two states in S� is greater than
or equal to the distance between the corresponding states in S�� A space with
these two properties is called an abstraction of the original space ���� Any ab�
straction of S gives rise to a monotone heuristic for searching in S� the distance

between states s� and s� in S can be estimated by the exact distance between
the corresponding states in S��

For the purposes of automatically generating a wide variety of heuristics from a
single search space description� and for having �ne control over certain key fea�
tures of the heuristics� we have found it useful to devise our own representation
language� PSVN� To date we have studied one method of creating abstractions
in PSVN� which we call domain abstraction� PSVN with domain abstraction gen�
eralizes the notion of pattern database �
�� Once the abstract space is created�
the distance�to�goal for the entire abstract space is precomputed and stored in a
lookup table with one entry for each abstract state� A heuristic represented by
such a lookup table we call a memory�based heuristic�

The attraction of memory�based heuristics is that they enable search time to
be reduced by using more memory� Korf ��� conjectures that memory �m� and
time �t� can be directly traded o	� i�e�� that the product m � t is a constant� This
conjecture is important because if it is true search time can be halved simply by
doubling available memory� In section ��
 we test this conjecture in a large�scale
experiment in which thousands of heuristics having a wide variety of memory
requirements are evaluated� In section �� a similar large�scale experiment is used
to verify that the complexity analysis of search heuristics by Korf and Reid ���
can be used to rapidly and reliably choose the best among a given set of memory�
based heuristics� Thus we can automatically generate a good heuristic for a novel
search space by randomly generating a large set of heuristics and using Korf and
Reid�s method to select the best among them�

� State Space Representation

To facilitate the automatic generation of many di	erent abstractions of widely
varying granularity� we use a simple vector notation for states and operators�
A state is represented by a �xed length vector of labels from a �nite set L
called the domain� An operator is represented by a left�hand side �LHS� and
right�hand side �RHS�� each a vector the same length as the state vectors� Each
position in the LHS and RHS vectors may be a constant �a label from L��
a variable� or an underscore � �� The variables in an operator�s RHS must also
appear in its LHS� An operator is applicable to state s if its LHS can be uni�ed
with s� The act of uni�cation binds each variable in LHS to the label in the
corresponding position in s� Underscores in the LHS act as
don�t cares�� The
RHS describes the state that results from applying the operator to s� The RHS
constants and variables �now bound� specify particular labels and an underscore
in a RHS position indicates that the resulting state has the same value as s in
that position� For example�

� A�A�
� � B� C ��� �� � � � C�B �

is an operator that can be applied to any state whose �rst two positions have
the same value and whose third position contains
� The e	ect of the operator

is to set the �rst position to � and exchange the labels in the last two positions�
all other positions are unchanged�

A state space is de�ned by a triple S �� s�� O� L �� where s� is a state� called
the seed state� O is a set of operators� and L is a �nite set of labels� The state
space is the transitive closure of s� and the operators� i�e�� it consists of all
reachable states from s� by any sequence of operators�

We call this notation PSVN �
production system vector notation��� Although
simple� it is expressive enough to specify succinctly all �nite permutation groups
�e�g� Rubik�s Cube� and the common benchmark problems for heuristic search
and planning �e�g� sliding tile puzzles��

� State Space Abstraction

A domain abstraction is a map � � L � K� where L and K are sets of labels
and jKj � jLj� A state space abstraction is induced by a domain abstraction by
applying � to the seed state and the operators� S� � ��S� �� ��s��� ��O��K ��
The action of � on an operator is to relabel the constants appearing in the
operator� The abstract state space is de�ned to be the transitive closure of ��O�
and ��s�� � the set of states reachable from ��s�� by applying operators in ��O��
This de�nition extends the notion of
pattern� in the pattern database work �
��
which in their framework is produced by mapping several of the labels in L to a
special new label �
don�t care�� and mapping the rest of the labels to themselves�

The key property of state space abstractions is that they are homomorphisms
and therefore the distance between two states in the original space� S� is always
greater than or equal to the distance between the corresponding abstract states
in ��S�� Thus� abstract distances are admissible heuristics for searching in S �in
fact they are monotone heuristics� for formal proofs of these assertions see �����

The heuristic de�ned by an abstraction can either be computed on demand� as
is done in Hierarchical A� ���� or� if the goal state is known in advance� the
abstract distance to the goal can be precomputed for all abstract states and
stored in a lookup table �pattern database� indexed by abstract states� In this
paper we take the latter approach� If all the operators in S are invertible� the
pattern database is constructed by an exhaustive breadth �rst traversal of S�

starting at the goal state� ��g�� and using the inverses of the operators� If some
operators are not invertible� the transpose of S� is created by a depth �rst forward
traversal starting from ��s�� and then the pattern database is constructed by
an exhaustive breadth �rst traversal of this explicit graph�

For special classes of search spaces a formula can be given relating an abstrac�
tion�s granularity to the memory needed for the corresponding memory�based
heuristic� But in general� the problem of estimating the size of the abstract
space is di�cult� The main complication is that an abstract space can contain
an arbitrarily large number of states which have no pre�images� We call such an

abstraction non�surjective� For example� consider the � � � sliding�tile puzzle
and the domain abstraction �� � f��
� �� �g � f��
� �g de�ned as�

���x� �

�
� if x � �
x if x �� �

This abstraction has two ��s �blank tiles� as shown in Figure
� It is non�surjective
because there are states in ���S� which have no pre�image in S� These states of
���S� have dashed line boundaries in Figure
�

1

2

1

2

1

2

2

1

1

2

12

2

1 1

2

2

1

2

1

1

1 2

2

Fig� �� ���S	

Non�surjective abstractions arise often in practice� All our attempts to represent
the Blocks World in PSVN have given rise to non�surjective homomorphisms ����
We have identi�ed two causes of non�surjectivity� orbits and blocks� These are
structural properties that naturally arise in problems in which the operators
move physical objects �e�g� the cubies in Rubik�s Cube� and there are constraints
on which positions an object can reach or on how the objects can move relative
to one another� We have also seen examples of other causes� but have not yet
been able to give a general characterization of them�

� Korf�s Conjecture

A fundamental question about memory�based heuristics concerns the relation�
ship betweenm� the size of the pattern database for a heuristic� and t� the number

of nodes generated when the heuristic is used to guide search� ��� gives an in�
sightful� but informal� analysis of this relationship which leads to the conjecture
that t � n�m�

The aim of our �rst experiment is to examine the true relationship between t
and m and compare it with the relationship conjectured in ���� Our approach
is to create abstractions with di	erent values of m and problem instances with
di	erent values of d and measure t by running A� �not IDA�� with each ab�
straction on each problem instance� This is repeated for di	erent search spaces
to increase con�dence in the generality of our conclusions� In these experiments
all the abstractions are surjective� since Korf�s conjecture is certainly false for
non�surjective abstractions�

For a given m there can be many di	erent abstractions� �� are generated at ran�
dom and their t values averaged� t is estimated separately for
hard��
typical��
and
easy� problem instances using
�� randomly selected start states of each
type �the goal state is �xed for each search space�� The di�culty of a problem in�
stance is determined by how its solution length compares to the solution lengths
of all other problem instances� For example� we use the median of the solution
lengths to de�ne a
typical� problem instance�

��Puzzle ��Perm Top�Spin

n ���

�
����
����

min m ��� �� ��

max m ���
� ����� �����

b ����� � �

deasy �� � ��

dtypical �� � ��

dhard �� � ��

Table �� Experiment Parameters

Results are presented ��gure �� as plots with m on the x�axis and t on the
y�axis� Each data point represents the average of ���� runs ��� abstractions�
each applied to
�� problem instances�� Breadth��rst search was also run on
all problem instances� it represents the extreme case when m �
� In total�
our experiments involved solving ����
�� problem instances� In this extended
abstract we present only the results for the ��puzzle�

We chose state spaces large enough to be interesting but small enough that such
a large�scale experiment was feasible� Table
 gives the general characteristics
and experiment parameters for each space� Note that the m values for each space
range from very small to a signi�cant fraction of n� Each state space is generated
by a puzzle� which we now brie�y describe�

The ��Puzzle is composed of � labeled sliding tiles arranged in a ��� grid� There
is one tile missing� so a neighboring tile can be slid into its place� In PSVN each
position in the vector corresponds to a particular grid position and the label
in vector�i� denotes the tile in the corresponding grid position� For example� if
vector position
 corresponds to the upper left grid position� and vector position
� corresponds to the upper middle grid position� the operator that exchanges a
tile in the upper left with an empty space ��� in the upper middle is

� X� �� � � � � � � ��� ��X� � � � � � � �

In the N �Perm puzzle a state is a vector of length N containing N distinct labels
and there are N �
 operators� numbered � to N � with operator k reversing the
order of the �rst k vector positions� We used N � �� In PSVN operator �� which
reverses the �rst � positions� is represented

� A�B�C�D�E� � � ��� E�D�C�B�A� � � �

The �N �K��Top�Spin puzzle has N tokens arranged in a ring� The tokens can
be shifted cyclically clockwise or counterclockwise� The ring of tokens intersects
a region K tokens in length which can be rotated to reverse the order of the
tokens currently in the region� We used N � � and K � �� and three operators
to de�ne the state space

� I� J�K�L�M�N�O� P ��� J�K�L�M�N�O� P� I �

� I� J�K�L�M�N�O� P ��� P� I� J�K�L�M�N�O �

� A�B�C�D� � � � � � � D�C�B�A� � � � �

��� Experimental Results

Figure � shows the experimental results for the ��puzzle with m on the x�axis
and t on the y�axis� The scale on both axes is logarithmic but the axes are labeled
with the actual m and t values� With both scales logarithmic t �m � constant
c� the conjecture in ���� would appear as a straight line with a slope of �
� Note
that the y�axis is drawn at m � ���� not at m � ��

In Figure � a short horizontal line across each line �at around m � ����� indi�
cates the performance of the Manhattan Distance on the ��puzzle test problem
instances� This shows that randomly generated abstractions of quite small size
����� entries� less than �� of the size of the state space� are as good as one of
the best hand�crafted heuristics known for the ��puzzle� The best of these ran�
domly generated heuristics expands about ��� fewer nodes than the Manhattan
distance�

A linear trend is very clear in all the results curves� The correlation between the
data and the least squares regression line is �� or higher in every case� However�
the slope is not�
� These results therefore strongly suggest that t�m� � constant

100

200

400

800

1600

3200

6400

12800

25600

252 500 1000 2000 4000 8000 16000 30240

t

m

d = 18
d = 22
d = 27

Fig� �� ��Puzzle
 Number of States Expanded �t� vs Size of Pattern Database �m��

c for 	 between ����! and ����� 	 in this range means that doubling the amount
of memory reduces the number of nodes expanded by less than a factor of ��

Despite the very high correlation with a straight line� it appears that the top
curves in each plot� and the middle curves to a lesser extent� are slightly bowed
up� i�e�� that for problem instances with long solutions the e	ect on t of increasing
m depends on the value of m� with a greater reduction in t being achieved when
m is large� The reason for the �attening out of the curves as they approach
m �
 is a decrease in the e	ective branching factor as A� expands more states�
A� caches all the states it generates� Search guided by a very small pattern
database will generate a signi�cant portion of the search space� and the more
states generated the higher the chance that a freshly generated state is already
in the cache� If plotted the e	ective branching factor of the ��puzzle is seen to
drop sharply as the size of the pattern database� m� decreases below
����

Figure � plots the average number of nodes expanded for every possible abstrac�
tion of the ��puzzle in which the blank tile remains unique� The average is over
��� start states distance �� from the goal state �a total of
�� ����� problem
instances were solved�� There are some very small pattern databases � one of size
 and eight of size !�� It is clear from that plot that for the search space for start
states with distance �� moves from the goal the linear trend continues along
the entire scale of pattern databases� The plot also shows an interesting phe�
nomenon� pattern databases of size ���� slightly outperform pattern databases
of size �!��� hence the notch in the curve�

Figure � shows how the pattern databases for the ��puzzle of all di	erent sizes
perform on the same ��� start states� Clearly� the number of states expanded
generally decreases as the size of the pattern database increases� However it is
equally clear that there is signi�cant overlap� the best heuristic with less memory
is often better than an average heuristic with slightly more memory� On the other
hand the range of variation for heuristics of the same size is not extremely large�

10

100

1000

10000

100000

1 10 100 1000 10000 100000

t

m

d=22

Fig� �� ��Puzzle � All Abstractions for d � ��
 Number of States Expanded �t� vs Size
of Pattern Database �m�

10

100

1000

10000

100000

100 1000 10000 100000

<7>
<6,2>

<6>
<5,3>
<4,4>
<5,2>
<4,3>

<5>
<4,2,2>
<3,3,2>

<4,2>
<3,3>

<3,2,2>
<4>

<2,2,2,2>
<3,2>

<2,2,2>
<3>

<2,2>

Fig� �� Number of States Expanded by All Pattern Databases �y axis	 vs� Memory
�x axis	� The Legend is Sorted in Increasing Memory Order� �� a� b� ��� � indicates
that the domain abstraction � was created by randomly choosing a many labels and
assigning them the new label la� b many labels had new label image lb ���� such that
la �� lb �� ���� The label representing the blank in all cases remained unique�	

the worst heuristic of any given size results in � to � times more nodes being
expanded than the best heuristic of the same size�

� Predicting a Heuristic�s Performance

In ��� Korf and Reid develop a formula to predict the number of nodes generated�
t� as a function of parameters that can be easily estimated for memory�based
heuristics� Our reconstruction of their development� with some slight di	erences�
leads to an estimate of the number of nodes

t�b� d� �

dX
i��

bi "P �d� i� �
�

where b is the space�s branching factor� d is the distance from the start state to
the goal state� and "P �x� is the percentage of the entries in the pattern database
that are less than or equal to x�

To verify how well equation
 predicts the number of nodes expanded we have
run an extensive experiment with the ��Puzzle� The average number of nodes
expanded for ��� start states �all distance �� from the goal state� was measured
for all abstractions that keep the blank tile unique� Each point in Figure �
represents the average number of states expanded on these start states for one
particular pattern database of size ����� This actual number of states expanded
is the x axis� the y axis is the value predicted by equation
� If equation

precisely predicted the number of nodes expanded� the points would lie on the
y � x line�

400

500

600

700

800

900

1000

1100

1200

1300

400 500 600 700 800 900 1000 1100

x

Fig� 	� Number of States Expanded as Predicted by Equation � �y axis	 vs� The Av�
erage of the Actual Number of States Expanded �x axis	� �m � ��
�	

For all sizes of heuristic the relation between the actual and predicted values
is an almost linear and certainly monotonic trend� Because of the monotonic
relation between equation
 and the actual number of nodes expanded� equation

 can be used to reliably determine which of two heuristics will result in fewer
nodes being expanded� The results shown here are when b and d are known
exactly� but we also have additional experiments showing the same trends when
b and d are estimated in a particular way�

� Conclusion

In this paper we introduced a simple way of encoding problems� PSVN� in which
states are vectors over a �nite domain of labels and operators are production
rules� By using PSVN domain abstractions are simple syntactic operations that
result in monotonic search heuristics� Thus heuristics can be generated automat�
ically from a state space�s PSVN description� We report large scale experiments
on moderate size search spaces to experimentally verify the relationship between
a heuristic�s memory and search e	ort and to predict the performance of pat�
tern databases from the estimated branching factor of the search tree and the
distribution of heuristic values in the pattern database�

��� Acknowledgments

This research was supported in part by an operating grant and a postgradu�
ate scholarship from the Natural Sciences and Engineering Research Council of
Canada� Thanks to Jonathan Schae	er and Joe Culberson for their encourage�
ment and helpful comments and to Richard Korf�

References

�� J� C� Culberson and J� Schae�er� Searching with pattern databases� Advances in
Arti�cial Intelligence �Lecture Notes in Arti�cial Intelligence ������ pages
���
���
�����

�� I� T� Hern�adv�olgyi and R� C� Holte� PSVN
 A vector representation for produc�
tion systems� Technical Report TR�����
� School of Information Technology and
Engineering� University of Ottawa� �����

�� R� C� Holte� M� B� Perez� R� M� Zimmer� and A� J� MacDonald� Hierarchical A�

Searching abstraction hierarchies e�ciently� Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence �AAAI	
��� pages �������� �����

� R� E� Korf� Finding optimal solutions to Rubik�s cube using pattern databases�
Proceedings of the Fourteenth National Conference on Arti�cial Intelligence �AAAI	

��� pages �������� �����

�� R� E� Korf and Michael Reid� Complexity analysis of admissible heuristic search�
Proceedings of the Fifteenth National Conference on Arti�cial Intelligence �AAAI	

��� pages �������� �����

�� A� E� Prieditis� Machine discovery of e�ective admissible heuristics� Machine Learn	
ing� ��
�����
�� �����

