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Abstract

In this paper we present greedy methods for select-
ing a subset of heuristic functions for guiding A*
search. Our methods are able to optimize various
objective functions while selecting a subset from
a pool of up to thousands of heuristics. Specif-
ically, our methods minimize approximations of
A*’s search tree size, and approximations of A*’s
running time. We show empirically that our meth-
ods can outperform state-of-the-art planners for de-
terministic optimal planning.

1 Introduction

The A* algorithm [Hart et al., 1968] finds cost-optimal solu-
tions to state-space planning problems when invoked with an
admissible heuristic (a function that never overestimates the
optimal solution cost for any state). There are various ways
of generating admissible heuristics, e.g., pattern databases
(PDBs) [Culberson and Schaeffer, 1998; Edelkamp, 20011,
but the quality of such heuristics varies greatly.

One way of improving the quality of admissible heuristics
is by maximizing over a set of them, an operation that yields
an admissible heuristic which can overall be much more ac-
curate than the original underlying heuristics. Ideally, one
would generate a large number (say thousands) of admissi-
ble heuristics and maximize over them, because a larger set
of heuristics increases the chance of having, for any given
state, a more accurate heuristic estimate. However, evaluat-
ing thousands of heuristics would take too long to compute.
We address this problem by proposing a method that carefully
selects a subset ¢’ of heuristics from a large pool ¢ and then
maximizes over ¢’. In other words, the final heuristic used to
guide A*, hpnaq, is defined by himaz (s, (") = maxpeer h(s).
Our approach is computationally efficient while still benefit-
ting from the most helpful heuristics in the large pool.

We treat the problem of selecting a subset ¢’ of ¢ as an opti-
mization problem, and present optimization methods for min-
imizing an approximation of A*’s search tree size (number of
nodes generated by A*, denoted as J) and for minimizing
an approximation of A*’s running time (denoted as 71") while
solving a planning task (J and 7" are defined in Section 4).

We present Greedy Heuristic Selection (GHS), a hill-
climbing procedure that adds heuristics from ¢ to ¢’ one at
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a time and halts when adding another heuristic does not im-
prove the objective function. GHS needs to efficiently esti-
mate the value of the objective function for a possibly large
number of heuristic subsets. We adapt two existing predic-
tion algorithms to quickly provide estimates of J and T for
any subset ¢’ of ¢, namely, the method presented by Barley et
al. [2014] and the one presented by Chen [1992].

Using the problems from the 2011 International Planning
Competition (IPC), we empirically evaluate GHS in optimal
classical planning problems while minimizing J, T', and max-
imizing the sum of heuristic values in the state space. Our
experiments show that the subsets chosen by our algorithm
can be far superior, in terms of coverage, to defining A4,
over the entire collection ¢ and to state-of-the-art methods. In
particular, an optimization procedure that minimizes a com-
bination of J and T outperforms all other approaches tested.

2 Related Work

The system most similar to GHS is RIDA* [Barley et al.,
2014]. RIDA* also selects a subset from a pool of heuristics
to guide the A* search. RIDA* starts with an empty subset
and tries all subsets of size one before trying subsets of size
two and so on. RIDA* stops after evaluating a fixed num-
ber of subsets. While RIDA* is able to select from a pool
with tens of heuristics, GHS is able to select from a pool with
thousands of heuristics. We show empirically GHS’s advan-
tage from being able to evaluate a larger pool of heuristics.

Rayner et al. [2013] present an optimization procedure that
is similar to ours. In contrast with our work, Rayner et al.
limited their experiments to a single objective function that
sought to maximize the sum of the heuristic values in the state
space. Moreover, their method performs a uniform sampling
of the reachable state space, and we are unaware of a general
way of doing this in domain-independent planning. In this
paper we adapt Rayner et al.’s approach to planning by using
Chen’s [1992] Stratified Sampling as its sampling procedure.
Our empirical results show that GHS minimizing 7" substan-
tially outperforms this adaptation of Rayner et al.’s approach
in domain-independent planning.

The methods GA-PDB [Edelkamp, 2007] and
iPDB [Haslum et al., 2007] also combine a set of PDB
heuristics. GA-PDB uses a genetic algorithm to maximize
the average value of the resulting heuristic function. iPDB
is based on the KRE prediction formula [Korf er al., 2001]



and it also uses the average heuristic value as a metric for
deciding which PDBs to combine into a heuristic. Seipp et
al. [2015] presented optimization procedures also aiming
at maximizing the average heuristic value in the reachable
state space while creating potential heuristics [Pommerening
et al., 2015]. In contrast with these works, the methods we
introduce use richer prediction models such as Stratified
Sampling [Chen, 1992] to select a subset of heuristics while
minimizing J and 7. Domshlak et al. [2012] introduced
Selmax, a method for deciding which heuristic to use to
evaluate a given node during search. Selmax evaluates only
a few heuristics and their experiments consider sets with two
heuristics; we consider sets with thousands of heuristics.

3 Background

An SAS™ planning task [Biickstrom and Nebel, 1995] is a 4-
tuple V.= (V,0,Z,G). V is a set of state variables. Each
variable v € V has a finite domain D,,. A state is an assign-
ment of a value in D,, to each v € V/, so that the set of all states
sV =D, x---x DUM' O is a set of operators, where each
operator o € O is a triple (pre,, post,, cost,) specifying the
preconditions, postconditions (effects), and non-negative cost
of 0. Operator o is applicable to state s if s and pre, agree
on the assignment of values to variables in V.. . The effect
of o, when applied to s, is to set the variables in Vo4, t0
the values specified in post, and to set all other variables to
the value they have in s, resulting in a new generated state.
We call the children of state s the states generated by apply-
ing the effects of each applicable operator of s (denoted as
children(s)). Furthermore, s is expanded when all its chil-
dren are generated. G is the goal condition, an assignment of
values to a subset of variables, V. A state is a goal state if
it agrees on the assignment of values to the variables in V.
7 is the initial state, and the planning task, V, is to find an
optimal (least-cost) sequence of operators leading from Z to
a goal state. We denote the optimal solution cost of V as C*.
We are interested only in optimal solutions. A heuristic i(s)
estimates the cost of a solution path from s to a goal. & is con-
sistent iff h(s) < c¢(s,t) 4+ h(t) for all states s and ¢, where
c(s, t) is the cost of the cheapest path from s to t.

Given a set of consistent heuristics { = {hy, ha, -+, har},
the heuristic hpq4(s,¢) = mazpech(s) is also consistent.
When describing our methods we assume all heuristics to be
consistent. We define fi,q2 (s, () = g(s)+hmax (s, (), where
g(s) is the cost of the current path from Z to s. We denote as
g™ (s) the cost of the least-cost path from Z to s and note that
g(s) = g*(s) when A* using a consistent heuristic expands
s. An A* search tree is defined by the states generated by A*
using a consistent heuristic while solving a problem V. In
this paper we use the terms state and node interchangeably.

4 Greedy Heuristic Selection

We introduce Greedy Heuristic Selection (GHS) an algorithm
able to find good solutions to the following problem,

minimize V(' V),
nim (¢,V) (1)

where W is either J or 7" (formally defined below).

Algorithm 1 Greedy Heuristic Selection

Input: problem V, set of heuristics ¢
Output: heuristic subset ¢’ C ¢

1«0

2: while ¢’ # ¢ do

3 h<argminU(¢’' U{h}, V)

hel

4: iU U{h},V)>T((,V)then

5: return ¢’

6: (' + ' uU{n}

7: return ¢’

Algorithm 1 shows GHS, which receives as input a problem
V, a set of heuristics ¢, and it returns a subset ¢’ C (. In each
iteration 7 GHS selects a heuristic h from ¢ and adds h to (',
where h is the heuristic that when individually combined with
¢’ reduces ¥ the most. GHS returns ¢’ once it can no longer
reduce the value of ¥ (line 4) or when ¢ = ¢’ (line 2).

Next, we describe two functions ¥ we consider: an approx-
imation of .J, and an approximation of 7. Although often one
is interested in minimizing a planner’s running time, we be-
lieve that J is also an important metric to be considered. This
is because planners often run out memory before running out
of time while solving planning problems, and J could serve
as a good proxy for memory usage of A*-based planners.

4.1 Approximation of A*’s Search Tree Size

The first objective function ¥ we consider is J(¢’, V), an
upper bound on the size of the search tree A* generates while
solving planning problem V using A4 ('),

J(</7v):|Uswnhf (SCI><C*children(s)}, (2)

where U, i 1. (s.c/)<c~ children(s) is a multiset, as in
an A* search the same state could be generated multiple
times. J(¢', V) assumes that A* expands all states s with
fmaz(8,¢") < C* before expanding a goal state. We write
J(¢") or simply J instead of J(¢', V) whenever ¢’ and V are
clear from the context. We present in this paper two methods
for approximating .J. We now show that J(¢’, V) is minimal,
for the subset ¢’ returned by GHS.

Theorem 1 Let the heuristics in (' as well as h ¢ ¢’ be con-
sistent heuristics. We have that J(¢' U{h}) < J({').

Proof. Fix ¢’ and h. Then J(¢' U {h}) =

=1U. . children(s)|
s With hypag (5,6 U{h})<C* —g*(s)
S‘ Us With hppae (5,¢")<C*—g*(s) Cthdren(s) !
=J((),
where the inequality follows from the fact that A, (s, ¢’ U
{h}) > h7nax(57 CI) for all s. 0

Corollary 1 J(¢,V) < J({', V) forany (' C (.

Lemma 1 Let V be a planning problem with optimal solu-
tion cost C*, A a set of consistent heuristic functions, and
B C A IfJ(A,V) < J(B,V), then there exists an element
h € A such that J(BU{h},V) < J(B, V).



Proof. If J(A,V) < J(B,V), then by the definition
of J there is a state s such that f,,q.(s,4) > C* and
fmaz(s,B) < C*. Thus, there is a heuristic h € A such
that h(s) > C* — g*(s) > hmas(s, B). Then, hyaq(s, BU
{h}) > C* — g*(s) follows from the definition of /4., and
consequently J(B U {h},V) < J(B, V). O

Theorem 2 Given a set ( of consistent heuristics, GHS re-
turns a subset ' of ¢ for which J() = J(').

Proof. GHS stops when no h € ( satisfies J(¢' U {h}) <
J({'). Thus, J(¢) < J(¢') cannot be true (Lemma 1). Since
J(¢) is minimal (Corollary 1), J(¢") = J(¢). O

4.2 Approximation of A*’s Running Time

Another ¥ we consider is T'(¢’, V), an approximation to the
running time of A* when using A, (¢") for solving V.

T, V) =J(, V) X (thyncry +tgen) 3)

where tj, (¢ is the heuristic evaluation time of A2 (¢"),
and 4y is the node generation time. We assume ¢, (¢
and t4.,, to be constant throughout the state space for a given
domain and heuristic. This is reasonable to assume for several
heuristics, e.g., PDBs, and several types of problem domains.
We write T'(¢") or simply T instead of T'(¢’, V) whenever ¢’
and V are clear from the context.

T(¢', V) represents only an approximate model of the A*
running time. For an exact computation we would have to
also account for other factors such as the time spent in opera-
tions on A*’s open list. However, it is usually hard to approx-
imate the running time of such operations because they could
vary during the search. Nevertheless, 7" captures the compu-
tational cost of the heuristic function being employed, which
we expect to dominate the running time of planning systems.

Next we show that if all A € ( have the same evaluation
time ¢, then the subset (' GHS returns is guaranteed to have
the lowest T-value amongst all subsets of size |¢’| or larger.

Theorem 3 Let  be a set of consistent heuristics. If tp, =
tn, for any hi, h; € C, then GHS yields a subset (' of ¢ with
(¢, V) <T(¢", V) for any " C Cwith [('] < |¢"].

Proof.
(', V)

T V) X (B () + Tgen)
T V) X (B () + Egen)
T V) X () +tgen) = TS, V).
The first inequality follows from ¢y, . () < tp,,... ¢y (be-

cause |¢'| < |¢’| and ¢y, is constant for any h € (), the second
from J({’, V) being minimal (Theorem 2). O

<
<

5 Estimating Tree Size and Running Time

In practice GHS uses approximations Jof Jand T of T in-
stead of their exact values. This is because computing J and
T exactly could be as expensive as solving V.

We investigate two methods for estimating J and T', Cul-
prit Sampling (CS) [Barley er al., 2014] and Stratified Sam-
pling (SS) [Chen, 1992]. Both CS and SS must be able to

quickly estimate the values of .J (¢’) and T°(¢’) for any subset
¢’ of ¢ so that they can be used in GHS’s optimization process.
This is achieved by estimating f-culprits and b-culprits.

Definition 1 (f-culprit) Letr ( = {hy, ha,--- ,har} be a set
of heuristics. The f-culprit of a node n in an A* search tree
is defined as the tuple F'(n) = (fi(n), f2(n), -, fu(n)),
where f;(n) = g(n) + hi(n). For any tuple F, the counter
Cr denotes the total number of children of nodes n in the
search tree with F(n) = F.

Definition 2 (b-culprit) Let ¢ = {hy, ha, - ,hpr} be a set
of heuristics and b a lower bound on the solution cost of V.
The b-culprit of a node n in an A* search tree is defined as the
tuple B(n) = (y1(n),y2(n), -~ ,ynm(n)), where y;(n) =1
if g(n)+hi(n) < band y;(n) = 0, otherwise. For any binary
tuple B, the counter Cg denotes the total number of children
of nodes n in the search tree with B(n) = B.!

We now describe how CS and SS estimate f- and b-culprits
and how the culprits can be used to quickly estimate .J({’)
and T'(¢’) for any subset ¢’ of ¢.

5.1 Culprit Sampler (CS)

CS runs an A* search bounded by a user-specified time limit
and then compresses the information obtained in the A*
search (i.e., the f-values of all nodes expanded according to
all heuristics h in () into b-culprits, which are later used for
computing J. The f-culprits are needed for computing the
b-culprits, as we explain below. The maximum number of f-
culprits and b-culprits in an A* search tree equals the number
of nodes in the tree expanded by the time-bounded A* search.
However, in practice the total number of f- and b-culprits is
usually much lower than the number of nodes in the tree.

Given V, (, and a user-specified time limit, CS samples the
A* search tree as follows.

1. CS runs A* using hqz (s, ¢) for one fourth of the user-
specified time limit. We denote as OPEN the set of states
in the A*’s open list when A* halts.

2. In the remainder of its running time, CS randomly se-
lects a state s from OPEN and computes hyp,in (s, () =
minpee h(s) for s, as well as for every node s’ in
s’s subtree for which f,,in(8,() = fimin(s’, (), where
Jmin(8,C) = hmin(s, )+ g(s). For each node sampled
in this procedure, we store its f-culprit and its counter.
We use h,pin, because A* using hp,in (8, ¢) expands node
s if it were to expand s with any h € ( individually.

3. Let fiazmin be the largest f-value according to A,y
encountered in CS’s sampling procedure. We compute
the set B of b-culprits and their counters based on the
f-culprits and on the value of f,,4zmin- This is done by
iterating over all f-culprits once.

CS is run only once in GHS’s execution. The value of
J(¢', V) for any subset ¢’ of ¢ is then computed by iterat-

ing over all b-culprits B and summing up the relevant values
of Cg. The relevant values of C'p represent the number of

'The vector B(n), and thus the values of C's for any B, depend
on the bound b, which we assume to be fixed.



nodes A* would generate in a search bounded by b if us-
ing humaz(¢’'). This computation is written as, .J(¢',V) =
> e W(B), where W (B) is 0 if there is a heuristic in ¢’
whose y-value in B is zero (i.e., there is a heuristic in ¢’ that
prunes all nodes compressed into B), and C'g otherwise.

In addition to computing J, the value of T requires ap-
proximations of ¢, for all h € ¢ and of ¢4.,. These values
are measured in a separate process, before executing CS, by
sampling a small number of nodes from V’s start state.

5.2 Stratified Sampling (SS)

Chen [1992] presented Stratified Sampling (SS), a method
for estimating the search tree size of backtracking search al-
gorithms. In this section we briefly describe Chen’s SS. For
a detailed description of SS, see Lelis er al. [2013].

SS approximates any function ¢ = 3 o 2(n), where S
is the set of nodes in a search tree and z is a function assign-
ing a numerical value to a node. ¢ represents a numerical
property of the tree. For GHS, z(n) = |children(n)|, so that
o is the number of nodes generated by the search procedure.

SS works by sampling the search tree with a procedure
similar to random walks. SS’s sampling procedure is limited
by a value d. Thatis, SS does not expand node n if f(n) > d.
Each sample of SS is called a probe. Chen proved that as the
number of probes grows large, SS’s estimate of ¢ converges
to its exact value. As Lelis et al. [2014b] showed, SS does
not detect duplicate nodes in its sampling procedure. Hence,
as A* does not expand duplicates, SS’s predictions usually
overestimates A*’s search tree size. We show empirically that
SS is still able to allow GHS to select good subsets.

Similar to CS, we define a time limit for SS and use an
iterative-deepening approach to ensure an estimate of J and
T before reaching the time limit. SS’s sampling is initially
limited by the h-value of the start state (d = hnax(Z,()).
After p probes, if there is still time, we double the value of d.
The values of J and 7" are given by the prediction produced
for the last d-value in which SS finishes all p probes. If SS
cannot finish all p probes during its first iteration, J and T are
given by the prediction from the incomplete first iteration.

SS must also estimate the values of .J(¢') and T'(¢’) for
any subset ¢’ of . This is achieved by using SS to estimate
b-culprits (see Definition 2) instead of the search tree size di-
rectly. Similar to CS, SS uses h,,;, of the heuristics in  to
decide when to prune a node while sampling. This ensures
that SS expands a node n if A* employing at least one of the
heuristics in ¢ would expand n according to bound d.

6 The Hybrid Approach

In this section we introduce an approach called Hybrid, that
minimizes both .J and 7' while using SS and CS. That is,
Hybrid uses GHS+SS to select a subset of heuristics from a
pool {; composed of heuristics with the same evaluation time.
We call the selection of a subset of (; the first selection. Once
the first selection ¢’ C (7 is made, Hybrid tests all possible
combinations of the resulting %4, (¢’) with heuristics from
another pool (2, composed of heuristics with possibly differ-
ent evaluation times, while minimizing T as estimated by Cs.

We call this step the second selection.

The intuition behind Hybrid is to apply GHS with its
strongest settings, i.e., according to Theorems 2 and 3, the
subset (' GHS chooses in the first selection is minimal with
respect to J and minimal amongst all subsets whose size is
equal or larger than |¢’| with respect to 7' (all k € ¢; have the
same evaluation time). After such a selection is made, we re-
duce all heuristics in (; to a single heuristic /4, (¢’). Then,
if (5 has only a few heuristics, we are able to select from
{Pmaz(¢")} U (o the exact subset that minimizes T. In our
experiments (; may have thousands of heuristics, depending
on the problem instance, while (5 has always only two.

We use SS instead of CS in the first selection because the
former is able to make better subset selections while mini-
mizing .J, as shown in Section 7.1. Finally, as indicated in
our experiments shown in Section 7.2, CS is more effective if
one is interested in minimizing T while selecting from a pool
of heuristics with different evaluation times. That is why we
use CS as a predictor for Hybrid’s second selection.

7 Empirical Evaluation

The practical effectiveness of GHS depends on its ability to
find good approximations J and T" and on the quality of (.
In order to verify its practical effectiveness, we have imple-
mented GHS in Fast Downward [Helmert, 2006] and tested
the A* performance using subsets of heuristics selected by
GHS while minimizing different objective functions.

We run two sets of experiments. In the first set we verify
whether the approximations Jand T provided by CS and SS
allow GHS to make good subset selections. In the second set
of experiments we test the effectiveness of GHS by measuring
the total number of problem instances solved by A* using the
heuristic subset selected by GHS.

In our experiments we first generate and store in mem-
ory all heuristics in ¢, and only then we use GHS to select
a subset ¢’ of (. The process of generating ( is limited by
1GB of memory and 600 seconds. The sampling procedure is
bounded by a 300-second time limit for both CS and SS.

SS requires one to define an equivalence relation of the
nodes in the search tree. In our experiments we consider
nodes equivalent if they have the same f-value. This equiva-
lence relation has shown to be effective in guiding SS in other
application domains [Lelis et al., 2013; 2014al. We use the
number of SS probes p = 500 in all our experiments.

We ran our experiments on the 2011 IPC instances instead
of the 2014 instances because the former do not have domains
with conditional effects, which are currently not handled by
the regression search that builds PDB heuristics. The 2011
IPC benchmark has 280 instances of 14 different domains (20
instances per domain). All experiments are run on 2.67 GHz
machines with 4 GB, and are limited to 1,800 seconds of run-
ning time. We use the preprocessor described by Alcdzar and
Torralba [2015] for mutex detection in all planners tested.

7.1 Empirical Evaluation of .J and 7

GHS is guaranteed to return a subset ¢’ that minimizes J. We
now test whether the J-values provided by CS and SS allow



SS Cs

Domain Ratio [{'] Ratio [{] <l "
Barman I.11 17.70 1.50 30.25 5,168.50 20
Elevators 11.50  2.00 1.04 21.00 168.00 1
Floortile 1.02 43.07 1.02 4236 15129 14
Openstacks 1.00 1.00 1.00 1.00 390.69 13
Parking 1.00  5.53 1.01  7.26 21.74 19
Parcprinter 3.62 1.00 221 13.00 1,189.00 1
Pegsol 1.00 31.00 1.00 57.00 90.00 2
Scanalyzer 1.23 30.57 1.57 1943 72.86 7
Sokoban 1.32 7.00 1.01 2400 341.00 1
Tidybot 1.00 235 1.00 859 3,400.18 17
Transport 1.00 14.70 1.03 1430 17170 10
Visitall 1.03 99.33 1.19 48.67 25633 3
Woodworking 3243 3.00 199.66 5.00 1,289.00 5

Table 1: Ratios of the number of nodes generated using
himaz (¢ to the number of nodes generated using g2 (€).

GHS to make good subset selections. This test is made by
comparing J(¢’) with the number of nodes generated by A*
while using N4 (€), which is minimal.

In contrast with objective function J, there is no easy way
to find the minimum of 7" in general. We experiment then
with the special case in which all heuristics in ¢ have the same
evaluation time. This way, if GHS selects a subset ¢’ which is
optimal with respect to .J, then we know that ¢’ has the lowest
T-value amongst all subsets of size |¢’| or larger (Theorem 3).

We collect values of J(¢) and J({’) as follows. For each
instance V in our test set we generate a set of PDB heuristics
using the GA-PDB algorithm [Edelkamp, 2007] as described
by Barley et al. [2014] (we call each PDB generated by this
method a GA-PDB). We chose to use only GA-PDBs in this
experiment as they all have nearly the same evaluation time.
The number of GA-PDBs generated is limited in this exper-
iment by 600 seconds and 1GB of memory. The GA-PDBs
generated form our ¢ set. GHS then selects a subset ¢’ of (.
Finally, we use A4, (¢") and hyyq4(¢) to independently try to
solve V. We call the system which uses A* with A4, (¢) the
Max approach. For GHS we allow 1,200 seconds in total for
both selecting ¢’ and for running A* with h,,,4,(¢’), and for
Max we allow 1,200 seconds for running A* with ;0. (C).
Since we used 600 seconds to generate the heuristics, both
Max and GHS were allowed 1,800 seconds in total for solv-
ing each problem. We test both CS and SS.

We refer to the approach that runs A* guided by a heuristic
subset selected by GHS using CS as GHS+CS. Similarly, we
write GHS+SS when SS is used as predictor.

Table 1 shows the average ratios of J(¢’) to J(¢) for both
SS and CS in different problem domains. The value of .J, for
a given problem instance, is computed as the number of nodes
generated up to the largest f-layer which is fully expanded by
all approaches tested (Max, GHS+SS, and GHS+CS). We only
present results for instances that are not solved during GHS’s
CS sampling process. The column “n” shows the number of
instances used to compute the averages of each row. We also
show the average number of GA-PDBs generated (|¢|) and
the average number of GA-PDBs selected by GHS (|¢’[). We
see that for most of the problems GHS, using either CS or
SS, is selecting a near-optimal subset of {. For example, in

Tidybot GHS selects only a few heuristics out of thousands
when using either SS or CS, and the resulting A* search tree
size is optimal for both approaches.

The exceptions in Table 1 are the ratios for Elevators, Parc-
printer, and Woodworking. In all three domains GHS+SS
failed to make good heuristic selections because SS was not
able to sample “deep enough” into the problem’s search tree.
For instance, for the Elevators instance SS was able to per-
form only 245 probes with the initial f-boundary within the
time limit of 300 seconds. GHS+CS is able to make better
selections for this instance because it is able to sample deeper
into the search tree. For the Parcprinter instance as well as the
Woodworking instances neither SS nor CS are able to sample
deep enough to make good heuristic selections. These results
suggest that SS could benefit from an adaptive approach for
choosing SS’s number of probes. For example, for the Ele-
vators instance SS could have performed better by sampling
deeper into the tree with fewer probes. We intend to investi-
gate this direction in future works.

In general SS is able to sample deeper than CS into the
search tree, which allowed GHS+SS to solve more instances
in this experiment. In total, out of the 280 instances, GHS+SS
solved 199 instances, while GHS+CS solved 194, and Max
182 (these numbers are not shown in Table 1).

7.2 Comparison with Other Planning Systems

The objective of this second set of experiments is to compare
GHS with state-of-the-art planners. Our evaluation metric is
coverage, i.e., number of problems solved within a 1,800-
second time limit, which includes the time to generate (, se-
lect ¢/, and run A* using Ry, (¢’). The ¢ set of heuristics is
composed of a number of different GA-PDBs, a PDB heuris-
tic produced by the iPDB method [Haslum et al., 2007] and
the LMCut heuristic [Pommerening and Helmert, 2013]. The
generation of GA-PDBs is limited by 600 seconds and 1 GB
of memory. We use one third of 600 seconds to generate GA-
PDBs with each of the following maximum numbers of en-
tries: {2 -10%,2-10°,2 - 105}. Our approach generates up
to thousands of GA-PDBs. We use exactly the same ( set for
Max and all GHS approaches.

7.3 Systems Tested

GHS is tested for minimizing J (Size) and T (Time). We
also use GHS to maximize the sum of heuristic values in
the state space (Sum), as suggested by Rayner et al. [2013].
Rayner et al. assumed that one could uniformly sample states
in the state space in order to estimate the sum of the heuristic
values for a given heuristic subset, which in general cannot
be done in domain-independent planning. Thus, we adapted
Rayner et al.’s method by using SS to estimate the sum of
heuristic values in the search tree rooted at V’s start state. Be-
low, Size+SS refers to the approach that uses A* guided by

a heuristic selected by GHS while minimizing a J provided
by SS. We name other combinations of objective functions
and prediction algorithms in a similar way (e.g., Time+CS).
In addition to testing all combinations of prediction algo-
rithms (CS and SS) and objective functions (Time, Size)
we also experiment with Hybrid using a pool {; composed
solely of GA-PDB heuristics, and (5 of iPDB and LMClut.



CS SS

Domains Hybrid — . . : Sum Max RIDA* SY1 SY2 StSpl StSp2 iPDB LMCut M&S
Time Size Time Size
Barman 7 5 4 4 4 4 4 10 11 4 4 4 4 4
Elevators 19 19 19 19 19 19 19 19 20 20 18 18 18 17 12
Floortile 15 14 14 14 14 14 14 14 14 14 14 14 14 8 10
Nomystery 20 20 20 19 19 20 20 20 16 16 20 20 14 19 18
Openstacks 17 17 15 17 15 15 15 20 20 17 17 15 17 17
Parcprinter 18 18 18 16 15 19 18 18 17 17 18 18 17 16 16
Parking 7 7 2 7 2 2 7 2 1 5 5 2 7 7
Pegsol 18 18 19 19 19 19 19 19 19 20 19 19 17 20 19
Scanalyzer 13 14 12 11 14 14 14 14 9 9 14 14 12 10 11
Sokoban 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Tidybot 17 16 16 16 16 16 15 17 15 17 16 16 16 14 9
Transport 14 13 10 11 13 11 10 100 11 7 8 6 8 7
Visitall 18 18 18 15 18 18 18 18 12 12 16 16 10 16 16
Woodworking 16 15 15 12 16 16 16 15 20 20 15 15 15 9 9
Total 219 214 202 200 204 207 199 210 204 208 203 204 180 185 175

Table 2: Coverage of different planning systems on the 2011 IPC benchmarks.

We compare the coverage of the GHS approaches with
the following state-of-the-art planners, RIDA* [Barley et
al., 2014], two variants of StoneSoup (StSpl and StSp2)
[Helmert et al., 2011], two versions of Symba (SY1 and
SY2) [Torralba, 2015]. We also independently run A* with
the following heuristics: maximum of all heuristics in (
(Max), iPDB, LMCut, and Merge & Shrink (M&S) as de-
scribed by Nissim et al. [2011]. Table 2 presents the results.

7.4 Discussion of the Results

The system that solves the largest number of instances is
Hybrid (219 in total). Its combination of the strengths of
both SS and CS has proven particularly effective on the Bar-
man domain where Hybrid’s first selection contains good
subsets of GA-PDBs and its second selection recognizes
when it must not add the iPDB and LMCut heuristics to the
first selection. As aresult, Hybrid solves more problems on
this domain than any other GHS approach.

Time+CS also performs well—it solves 214 problems.
Hybrid and Time+CS are superior to all other approaches

tested. When minimizing J or maximizing Sum, GHS tends
to add accurate heuristics to the selected subset, irrespective
of their evaluation time. Thus, GHS frequently selects LMCut
which is often the heuristic that most reduces the search tree
size and most increases the sum of heuristic values. However,
LMCut is computationally expensive, and often the search is
faster if LMCut is not in {’. Both Hybrid and Time+CS of-
ten recognize when LMCut should not be in ¢’ because they
account for the heuristics’ evaluation time.

Interestingly, while Time+CS solves 214 instances,
Time+SS solves only 200. We conjecture that this is due
to SS not detecting duplicate nodes during sampling and thus
substantially overestimating A*’s running time. As a result,
similarly to the Size and Sum approaches, Time+SS often
mistakenly adds the accurate but expensive LMCut heuristic
in cases where A* would be faster without LMCut.

RIDA* is the most similar system to GHS; it selects a sub-
set of heuristics by using an evaluation method similar to CS.
Starting with an empty subset, it evaluates all subsets of size
1 before evaluating subsets of size 7 + 1. This limits RIDA*

to considering only tens of heuristics in its pool. Specifically,
RIDA* uses 42 GA-PDBs, iPDB, and LMCaut in its pool. By
contrast, GHS may consider thousands of heuristics.

Selecting from large sets of heuristics can be helpful, even
if most of the heuristics in the set are redundant with each
other—as is the case with the GA-PDBs. The process of
generating GA-PDBs is stochastic, thus one increases the
chances of generating a helpful heuristic by generating a large
number of them. GHS is an effective method for selecting a
small set of informative heuristics from a large set of mostly
uninformative ones. This is illustrated in Table 2 on the
Transport domain. Compared to systems which use multi-
ple heuristics (StSp 1 and 2, and RIDA*), Hybrid solves
the largest number of Transport instances, which is due to the
selection of a few key GA-PDBs.

The best GHS approach, Hybrid, substantially outper-
forms Max; Hybrid solves 20 more instances than Max.
Finally, Hybrid and Time+CS outperform all other ap-
proaches tested, with RIDA* being the closest competitor
with 210 instances solved.

8 Concluding Remarks

In this paper we presented GHS, a greedy optimization al-
gorithm that chooses a subset from a pool of thousands of
heuristics. We used GHS to select a subset of heuristics while
minimizing an approximation of A*’s search tree size (.J) and
an approximation of A*’s running time (T)—two objective
functions we proposed in this paper. In addition to the two
objective functions we proposed, we also experimented with
an objective function that accounts for the sum of heuristic
values in the state space (Sum). We tested two methods,
CS and SS, for estimating the values of the objective func-
tions tested. Several previous works used Sum (or variations
of it) for constructing heuristics (e.g., [Haslum et al., 2007;
Edelkamp, 2007; Rayner er al., 2013; Seipp er al., 2015]).
Our experiments on optimal domain-independent problems
showed that GHS using a hybrid approach that minimizes a
combination of J and T’ outperformed all other approaches
tested, including the approach that maximizes Sum.
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