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Abstract. Decision tree learning algorithms produce accurate models
that can be interpreted by domain experts. However, these algorithms are
known to be unstable – they can produce drastically different hypothe-
ses from training sets that differ just slightly. This instability undermines
the objective of extracting knowledge from the trees. In this paper, we
study the instability of the C4.5 decision tree learner in the context of ac-
tive learning. We introduce a new measure of decision tree stability, and
define three aspects of active learning stability. Several existing active
learning methods that use C4.5 as a component are compared empiri-
cally; it is determined that query-by-bagging yields trees that are more
stable and accurate than those produced by competing methods. Also,
an alternative splitting criterion, DKM, is found to improve the stability
and accuracy of C4.5 in the active learning setting.

Keywords: Decision tree learning, evaluation of learning methods, ac-
tive learning, ensemble methods.

1 Introduction

Decision tree learners constitute one of the most well studied classes of ma-
chine learning algorithms. The relative ease with which a decision tree classifier
can be interpreted is one of its most attractive qualities. However, decision tree
learners are known to be highly unstable procedures – they can produce dra-
matically different classifiers from training sets that differ just slightly [1,2]. This
instability undermines the objective of extracting knowledge from decision trees.
Turney [2] describes a situation in which decision trees were used by engineers
to help them understand the sources of low yield in a manufacturing process:
“The engineers frequently have good reasons for believing that the causes of low
yield are relatively constant over time. Therefore the engineers are disturbed
when different batches of data from the same process result in radically different
decision trees. The engineers lose confidence in the decision trees, even when we
can demonstrate that the trees have high predictive accuracy.”

We have studied the instability of the C4.5 decision tree learner [3] in the
context of both passive and active learning [4]. In this paper, we present the
results of the active learning study. Instability is a concern in active learning
because the decision tree may change substantially whenever new examples are
labelled and added to the training set.
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This paper asks an important new question: How stable are the decision trees
produced by some well-known active learning methods? Experiments are con-
ducted that compare the performance of several active learning methods, which
use C4.5 as a component learner, on a collection of benchmark datasets. It is
determined that the query-by-bagging method [5] is more stable and more accu-
rate than its competitors. This is an interesting result because no previous active
learning study has trained a single decision tree on examples selected by a com-
mittee of trees. Query-by-bagging tends to yield larger trees than do the other
methods; yet, we provide evidence that these increases in size do not usually en-
tail a loss of interpretability. Our second contribution is a set of new definitions
of “stability,” which fill an important gap between the extremities represented by
existing measures. Finally, the DKM splitting criterion [6,7] is shown to improve
the stability and accuracy of C4.5 in the active learning setting.

2 Decision Tree Instability

A learning algorithm is said to be unstable if it is sensitive to small changes in
the training data. When presented with training sets that differ by some small
amount, an unstable learner may produce substantially different classifiers. On
the other hand, stable learning algorithms, such as nearest neighbour, are less
sensitive in this regard [8]. As a concrete example of instability, consider the
decision trees shown in Fig. 1. These two trees were grown and pruned by C4.5
using data from the lymphography dataset, which was obtained from the UCI
repository [9]. For clarity, each attribute is denoted by a single letter,1 and the
class labels are ‘malign lymph’ (+) and ‘metastases’ (−). The data was converted
to a two-class problem by deleting the examples belonging to the ‘normal find’
and ‘fibrosis’ classes, which account for 6 of the 148 instances. Figure 1(a) dis-
plays a tree, T106, that was induced from a random sample consisting of 106
(roughly 75%) of the available examples. A single instance, randomly chosen
from the unused examples, was appended to this training set, from which C4.5
produced the tree T107 that is shown in Fig. 1(b). The two trees differ con-
siderably in size, as T107 contains nearly double the number of decision nodes
appearing in T106. Moreover, there is just one path from the root to a leaf node
along which both trees perform the same set of tests when classifying an example;
this is the path that consists of the tests {A≤3=T, B=B2, D=D4} and predicts
the negative class. In all other cases, the trees apply different reasoning when
making predictions. The fact that these changes were caused by the addition of
one training example illustrates the instability of the C4.5 algorithm.

3 Quantifying Stability

In this paper, two types of stability are examined: semantic and structural sta-
bility. A learner that is semantically stable will, when presented with similar
1 The values of each discrete attribute are enumerated, whereas the possible outcomes

for a test on a continuous attribute are T (true) and F (false).
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(b) Tree grown from 107 examples

Fig. 1. Decision trees grown from two subsets of the lymphography dataset that differ
in a single training example. The shaded leaf in each tree highlights the only case in
which both trees perform the same set of tests when predicting the class label.

data samples, tend to produce hypotheses that make similar predictions. For a
learner to be structurally stable, a stronger condition must be satisfied, namely,
the hypotheses that it creates from closely related data sets must be syntac-
tically similar. Thus, structural stability is a sufficient condition for semantic
stability, but the converse is not true. It is also possible to formulate a measure
of stability that is not purely semantic or purely structural, but which considers
some characteristics of a classifier’s structure.

To measure semantic stability, we adopt a learner-independent measure called
agreement [2]. Given two training sets, the learner induces a pair of hypotheses;
the agreement is defined as the probability that a randomly chosen unlabelled
example is assigned to the same class by both models. In practice, agreement is
estimated by having the models classify a randomly selected set of examples.

There is no consensus on how to quantify the structural stability of decision
trees. Two existing measures, called Discrepant [10] and Common [11], report
minimal stability when two trees differ at the root node. However, it is possible
for trees to differ at the root, and yet be quite similar or even identical elsewhere;
neither of these metrics are sensitive to such an occurrence. We propose a novel
measure, called region stability, that we argue is more appropriate for comparing
the structure of decision trees.

Each leaf in a decision tree is a decision region whose boundaries are defined
by the unordered set of nodes and branches that make up the path from the
root to the leaf. The region stability measure compares the decision regions in
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one tree with those of another. Specifically, it estimates the probability that two
trees classify a randomly selected example in “equivalent” decision regions. Two
decision regions are considered to be equivalent if they perform the same set of
tests and predict the same class label.

Region stability is estimated by having the two trees classify a randomly
chosen set of unlabelled examples. As an illustration, suppose that the region
stability score for the trees in Fig. 1 is computed using 100 examples, 5 of which
are classified in the shaded leaf in each tree. Since this is the only decision region
that the trees have in common (all other pairs of regions differ in at least one
test), the region stability score is 0.05. The effect of using unlabelled examples in
the calculation is that more weight is assigned to a region that classifies a larger
portion of these examples in the event that their distribution is non-uniform.

When comparing two decision regions that test a particular continuous at-
tribute, the thresholds (or cut-points) are checked for equality. However, C4.5
only places a threshold at a value that exists in the training data, and so it can
be impossible for identical thresholds to appear in two trees that are induced
from slightly different samples. In some learning tasks, small discrepancies of this
sort may be considered superficial. For this reason, the region stability measure
accepts a parameter ε ∈ [0, 100]% that specifies a permitted margin of error be-
tween thresholds defined on a continuous attribute a. Let min(a) and max(a) be
the minimum and maximum values for a in the entire dataset. Two thresholds
defined on a are considered equal if they are within ε · [max(a) − min(a)]/100
units of one another. Note that the path from the root to a leaf may contain
multiple tests on the same continuous attribute that specify distinct thresholds.
The leftmost path in Fig. 1(a), for example, contains the tests A≤3 and A≤1.
Since the first of these tests is redundant given the second, only the test A≤1 is
considered when comparing this decision region to another.

4 Instability in Active Learning

In active learning, the learner has the ability to choose points from the in-
stance space on which to train a classifier. Although the ability of active learn-
ing methods to make more efficient use of unlabelled data has been well docu-
mented [5,12,13,14], little attention has been given to the stability of these tech-
niques. This study focuses on pool-based active learning, or selective sampling,
in which the learner draws a batch of m examples from a pool of unlabelled ex-
amples U on each iteration. The selective sampling methods tested in this study
all make use of a base learning algorithm, which in this case is C4.5.

The stability of a sampling method is measured with respect to the deci-
sion trees that are induced by C4.5 from the training examples chosen by that
method. We propose three different aspects of stability in active learning, which
are named PrevStab, FinalStab, and RunStab. Each of these is quantified by ap-
plying a distance measure Φ (e.g. region stability or agreement) to specific pairs
of trees. Let Ti denote the tree induced from the labelled data at iteration i of
selective sampling. PrevStab quantifies the similarity of trees that are induced
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on consecutive iterations. For i > 1, trees from iterations i and i − 1 are com-
pared; that is, the score Φ (Ti, Ti−1) is computed. Calculating this score for all
consecutive pairs of trees induced during active learning reveals the amount of
change that occurs as a result of adding each new batch of examples to the
training set. FinalStab compares the tree induced at each iteration to the tree
that is induced on the final iteration of selective sampling. At iteration i of n,
for i < n, FinalStab computes Φ (Ti, Tn); thus, it evaluates the manner in which
the sequence of trees progresses toward the final tree that is produced. Finally,
RunStab quantifies stability across different selective sampling “runs,” in which
distinct initial training sets are used. This score may be interpreted as the de-
gree to which an active learning method yields similar trees from different initial
training data. Given r runs of selective sampling, the RunStab score at iteration
i is obtained by computing Φ(T j

i , T k
i ) for each pair of runs {j, k} ≤ r, j �= k, and

then taking the average of these values. Here, T p
i is the set of labelled examples

at iteration i when using the pth initial training set.
When assessing the stability of a selective sampling procedure, some prop-

erties of the stability scores are desirable. For example, the FinalStab scores
should increase as more examples are labelled and added to the training set,
reaching reasonably high levels in the later stages of active learning. An increas-
ing sequence of FinalStab scores implies that the learner produces decision trees
that have progressively more structure in common with the final tree. PrevStab
scores are expected to be low during the initial iterations, as the selective sam-
pling method explores the instance space. Later, when the sampling method
presumably begins refining the hypothesis, the PrevStab scores should increase
and maintain a fairly high level. Last of all, high RunStab scores are desirable,
especially in the late stages of selective sampling. If this is not the case, then
the sampling method is sensitive to the particular examples that form the initial
training set, and the trees it produces during different runs are dissimilar.

5 Experiments

5.1 Experimental Procedure

Experiments were carried out using four selective sampling methods: uncer-
tainty sampling [13], query-by-bagging and query-by-boosting [5], and bootstrap-
LV [14]. These are all uncertainty-based approaches, which heuristically select
examples based on how confidently their true labels can be predicted. The latter
three methods each form a committee of decision trees (a committee size of 10
was used here), and request the labels of the examples for which the committee
“vote” is most evenly split. It is worth noting, however, that active learners exist
which optimize other criteria, such as the expected future error [15]. Random
sampling was also included in these experiments as a basis for comparison.

The sampling methods used C4.5 Release 8 [3] as a base learner. Experiments
were duplicated using C4.5’s default gain ratio splitting criterion (hereafter called
entropy) and the DKM criterion [6,7] to grow trees. Each of these splitting
criteria are defined by an impurity function f(a, b), which is a log2(a)+ b log2(b)
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for entropy and
√

2ab for DKM. Here, a and b represent the probabilities of
each class within a given subset of examples formed by the split. Additionally,
C4.5 Release 8 applies a penalty term to splits on continuous attributes that is
specifically designed for entropy; our modification for DKM is described in [4].

Sixteen datasets were obtained from the UCI repository that each contained at
least 500 training examples; this ensured that the unlabelled pool was reasonably
large. Since DKM only handles two-class problems, multi-class datasets were
converted to two-class ones by designating a single class as the target concept,
and aggregating the remaining classes into the class “other.” The target class used
for each dataset is shown in Table 1. Furthermore, the region stability measure
requires that each example be classified by exactly one leaf. Thus, attributes with
an unknown value rate greater than 10 percent were removed, and any remaining
instances that still contained missing values were deleted. The modified datasets
are available online at http://www.cs.ualberta.ca/~dwyer/ecml2007/.

For each dataset, one third of the data from each class was randomly set aside
for evaluation; these examples were used to measure the stability and error rate
of the induced classifiers. Of the remaining instances, 15 percent were randomly
chosen to form the initial training set, while the others constituted the pool of
unlabelled examples. The batch size m was set to be 2 percent of the number
of examples in a given dataset, to a minimum of 10 and a maximum of 50, and
active learning ceased once two-thirds of the pool examples had been labelled.
For a given dataset, 25 runs were performed, using different initial training sets.
The same evaluation set was used during each run, in order to remove a source
of variation when comparing stability and error rate across runs. Finally, the
region stability scores were computed using ε values of 0, 5, and 10 percent.

5.2 Evaluation

In order to determine whether one selective sampling method was superior to
another on a given dataset, a summary statistic was devised to convert each
sequence of scores into a single value. Our summary statistic is a weighted aver-
age that assigns greater weight to later iterations. It was argued in Sect. 4 that
structural stability is most desirable in the later stages of active learning; ide-
ally, the learner will have a reasonable grasp of the target concept at this point,
and new examples will serve mainly to refine the model, rather than to alter it
significantly. A high level of stability during early iterations of active learning is
of little value if stability deteriorates in later rounds.

After completing 25 runs of n iterations on a given dataset, the mean score for
a statistic was calculated on each iteration. A weighted average was then com-
puted as 1

n

∑n
i=1 wi · si, where si is the mean score on iteration i; the weights

wi increased linearly as a function of i, according to the equation wi = 2i
n(n+1) .

Semantic and structural stability were measured by calculating FinalStab, Prev-
Stab, and RunStab using Turney’s agreement and the region stability measure.
The learning curve for error rate was summarized using the same weighted av-
eraging scheme as for stability, under the assumption that a lower error rate is
also most desirable in the later stages of active learning.

http://www.cs.ualberta.ca/~dwyer/ecml2007/
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Fig. 2. Plots of two statistics for the kr-vs-kp dataset when using DKM. QBag is the
most stable and the most accurate sampling method in this case. In all experiments,
learning ceased when 2/3 of the instances in the pool had been labelled.

To exemplify how the weighted averaging scheme characterizes the scores that
are produced by the selective sampling procedures, consider Fig. 2(a). Here, the
structural FinalStab scores for 4 of the 5 sampling methods on the kr-vs-kp data-
set are plotted as a function of the training set size. Query-by-bagging (QBag)
was clearly the most stable method on this dataset, with a weighted score of
.953, while random sampling (Random) placed second, at .858. Bootstrap-LV
(BootLV) and uncertainty sampling (Uncert), were more closely matched. Al-
though Uncert was marginally more stable than BootLV during the final itera-
tions, the former’s instability between x = .13 and x = .27 dropped its weighted
score (.638) below that of BootLV (.644).

In order to assess the statistical significance of the experimental results, the
following methodology was applied [16]. The null hypothesis is that all the sam-
pling methods are equivalent. For each dataset, ranks were assigned to the meth-
ods based on their weighted scores. Next, the Friedman test2 was applied to each
method’s average rank, and the critical value was computed using the FF statis-
tic. If the null hypothesis could be rejected based on this value at a chosen
significance level α, the Nemenyi test was used to determine whether significant
differences existed between any given pair of sampling methods.

To illustrate this process, consider the weighted error rates displayed in Ta-
ble 1. For each dataset, ranks (shown in parentheses) are assigned in order of
increasing error rate, with averages used in the event of a tie. With an average
rank of 4.375 over all datasets, Random is the worst-ranking method, while QBag
ranks the best, on average (1.625). At α = .05, the null hypothesis is rejected
based on the Friedman test. The critical difference is 1.527, and so differences
between average ranks of at least this amount are statistically significant. Thus,
QBag, QBoost, and BootLV are each significantly more accurate than Random;
2 The tests of statistical significance that were applied are described in [16].
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Table 1. Weighted average error rates when using the DKM splitting criterion, (ranks
in parentheses). For each dataset, the lowest observed error rate is bolded.

Dataset Random QBag QBoost BootLV Uncert
(target class) (R) (G) (T) (L) (U)
anneal (not-3) .144 (4) .121 (1) .135 (3) .125 (2) .150 (5)
australian (+) .129 (1.5) .129 (1.5) .131 (5) .130 (3.5) .130 (3.5)
car (acceptable) .090 (5) .077 (1) .082 (4) .078 (2) .081 (3)
german (bad) .293 (5) .274 (1) .285 (2) .290 (4) .289 (3)
hypothyroid (+) .006 (5) .002 (2) .002 (2) .002 (2) .004 (4)
kr-vs-kp (no-win) .014 (5) .007 (1.5) .008 (3) .007 (1.5) .010 (4)
letter (k) .015 (5) .011 (2) .011 (2) .011 (2) .013 (4)
nursery (priority) .056 (5) .038 (1.5) .039 (3) .038 (1.5) .044 (4)
pendigits (9) .016 (5) .010 (1.5) .010 (1.5) .012 (4) .011 (3)
pima-indians (+) .286 (5) .283 (2) .280 (1) .284 (3) .285 (4)
segment (cement) .020 (5) .011 (1) .012 (2.5) .012 (2.5) .019 (4)
tic-tac-toe (−) .217 (5) .197 (1) .201 (2) .207 (3) .211 (4)
vehicle (opel) .227 (1) .231 (5) .229 (3.5) .228 (2) .229 (3.5)
vowel (hud) .056 (5) .033 (1) .036 (2) .037 (3) .049 (4)
wdbc (malignant) .073 (4) .068 (2) .067 (1) .069 (3) .076 (5)
yeast (nuclear) .256 (4.5) .250 (1) .253 (2.5) .256 (4.5) .253 (2.5)
Avg. rank (4.375) (1.625) R,U (2.500) R (2.719) R (3.781)

also, QBag is superior to Uncert. A letter beside the average rank of a sampling
method S indicates that S is significantly better than the method corresponding
to that letter. For example, the R and U in the QBag column of Table 1 imply
that QBag is significantly more accurate than Random and Uncert, respectively.

5.3 Experimental Results

Due to space limitations, only the average ranks are presented for each statis-
tic; these are displayed in Table 2. Although the average ranks are sufficient for
demonstrating our findings, detailed results may be viewed at http://
www.cs.ualberta.ca/˜dwyer/ecml2007/. In Table 2, the level of significance
that was tested for each statistic is shown in the “α” column.

Error Rate. The committee-based methods achieved significantly lower error
rates than did Random, independent of the splitting criterion employed. Uncert
was also significantly less accurate than QBag.

Overall, the results support the findings of previous active learning studies
that involved these sampling methods, in that Random was certainly the inferior
approach, and committee-based methods usually produced lower error rates than
Uncert [5,14]. However, there is a subtle, yet important factor distinguishing
our experiments from existing research involving active learning with decision
trees. The committee-based results reported in our experiments represent the
performance of a single C4.5 decision tree that is trained on examples selected
by a committee of trees. By contrast, in the original experiments involving QBag,

http://www.cs.ualberta.ca/~dwyer/ecml2007/
http://www.cs.ualberta.ca/~dwyer/ecml2007/
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Table 2. Average ranks for the sampling methods on each statistic. The top half of
the table diplays the results for the entropy criterion; bottom half: DKM criterion.

Statistic ε α Random QBag QBoost BootLV Uncert
(R) (G) (T) (L) (U)

E
nt

ro
py

cr
it
er

io
n

Error Rate – .05 4.406 2.000 R,U 2.188 R 2.719 R 3.688
Tree Size – .01 1.062 G,T,U 4.062 3.938 2.500 3.250
Seman. FinalStab – .05 4.281 1.969 R 3.000 3.094 2.656 R
Seman. PrevStab – .05 4.000 2.062 R 3.531 3.094 2.312 R
Seman. RunStab – .01 4.625 1.344 R,U 2.625 R 2.656 R 3.750
Struct. FinalStab 0

.10
3.562 2.875 2.875 3.000 2.688

Struct. FinalStab 5 3.375 3.031 2.875 2.812 2.906
Struct. FinalStab 10 3.344 3.000 2.938 2.750 2.969
Struct. PrevStab 0

.10
3.312 2.719 3.406 3.062 2.500

Struct. PrevStab 5 3.188 2.812 3.469 2.969 2.562
Struct. PrevStab 10 3.062 2.812 3.594 2.969 2.562
Struct. RunStab 0

.01
4.469 1.750 R,U 2.000 R,U 2.656 4.125

Struct. RunStab 5 4.188 1.656 R,U 2.188 R,U 2.594 4.375
Struct. RunStab 10 4.156 1.656 R,U 2.250 R,U 2.562 4.375

D
K

M
cr

it
er

io
n

Error Rate – .05 4.375 1.625 R,U 2.500 R 2.719 R 3.781
Tree Size – .01 1.125 G,T,U 4.125 3.938 2.625 3.125
Seman. FinalStab – .05 4.000 2.188 R 3.250 2.750 2.812
Seman. PrevStab – .05 3.594 2.312 T 3.844 2.812 2.438
Seman. RunStab – .01 4.531 1.562 R,U 2.750 R 2.469 R 3.688
Struct. FinalStab 0

.10
3.281 2.562 3.188 3.094 2.875

Struct. FinalStab 5 3.156 2.594 3.125 3.031 3.094
Struct. FinalStab 10 3.281 2.562 3.125 3.125 2.906
Struct. PrevStab 0

.10
2.875 2.812 3.844 2.906 2.562

Struct. PrevStab 5 2.844 2.875 3.688 2.938 2.656
Struct. PrevStab 10 2.812 2.938 3.688 2.844 2.719
Struct. RunStab 0

.01
4.031 1.875 R,U 2.125 R,U 2.625 4.344

Struct. RunStab 5 3.719 2.031 U 2.188 U 2.750 4.312
Struct. RunStab 10 3.875 1.938 R,U 2.344 U 2.562 4.281

for instance, a committee of C4.5 trees selected unlabelled examples that were
subsequently used to train a bagged committee of trees [5]. Note that although a
single decision tree trained from labelled data L is likely to be less accurate than
a bagged committee trained from L, the committee is no longer intelligible [1].

Other methods have been proposed for training one type of classifier on ex-
amples selected by another type. Lewis and Catlett [13] employed a probabilistic
classifier to select training examples for C4.5, and Domingos [17] used a commit-
tee to generate labelled data, from which a single classifier was trained. However,
we are not aware of any previous study in which a committee of decision trees
was used to train a single tree within the active learning framework.

Tree Size. In terms of the number of leaf nodes, the selective sampling methods
consistently yielded larger trees than did Random (see “Tree Size” in Table 2).
The trees grown by QBag tended to be the largest, containing 38 percent more
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leaves, on average, than those of Random. Does this imply that trees grown
using QBag, for example, are more difficult to interpret than trees produced
by Random? While no agreed-upon criterion exists for distinguishing between
a tree that is interpretable and a tree that is not, one simple criterion is that
there might exist a threshold t, such that any tree containing more than t leaves
is uninterpretable. The datasets on which the weighted average leaf count for
Random is at most t and the count for QBag is greater than t would then
represent cases where QBag sacrifices intelligibility. Testing all integer values of
t ranging from 1 to 25, we find that this occurs on at most 5 datasets (t = 13)
when using DKM, and at most 3 datasets (t = 11, 12) with entropy. Thus,
QBag’s gains in accuracy are not typically made at the expense of intelligibility.

Stability. With regard to semantic stability, QBag achieved the best average
rank on FinalStab, PrevStab, and RunStab, for both splitting criteria. Random
was the least stable method in all but one case (PrevStab with DKM). Although
Uncert also performed well on FinalStab and PrevStab, it was significantly less
stable than QBag on the RunStab measure, as was Random. No strong conclu-
sions could be drawn regarding the semantic stability of QBoost or BootLV.

As for structural stability, the RunStab results were highly significant. QBag
and QBoost were the two best-ranked methods for all three values of ε that were
used, while Random and Uncert were the worst. By definition, QBag and QBoost
always choose the m highest scoring examples from the pool – the ones for which
the committee vote is most divided. Therefore, a given example will be added to
the training set if it receives a sufficiently high score at some iteration. BootLV,
on the other hand, does not necessarily choose the highest scoring examples;
it samples m times from a probability distribution in which the weight of an
example is proportional to its score. Random is completely stochastic, which
accounts for its instability across runs. As for Uncert, its low RunStab scores are
a consequence of assigning scores to unlabelled examples based on the hypothesis
of a single decision tree. Since this tree is generally unstable, the score assigned
to a given example is likely to change considerably when the tree is induced
from different training data. This problem is mitigated by the committee-based
methods, as a committee of trees tends to be more stable than a single tree [1].

The results for structural FinalStab and PrevStab did not reveal any statis-
tically significant differences between the sampling methods, even at α = .10.

Table 3. Pairwise comparisons involving the QBag sampling method. The significance
level α is indicated in parentheses where applicable.

(a) Structural FinalStab win-loss
counts for QBag vs. Random
ε Entropy DKM
0 10-6 (.05) 11-4 (.05)
5 9-7 (.10) 10-6
10 9-6 (.10) 10-6

(b) Structural stability win-loss counts
for DKM vs. entropy when using QBag
ε FinalStab PrevStab RunStab
0 10-6 (.10) 11-5 (.05) 9-7
5 11-5 (.05) 12-4 (.05) 11-5 (.05)
10 12-4 (.05) 12-4 (.05) 10-6 (.10)
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The ranges of the average ranks were smaller for these statistics; yet, Random
had the worst average rank on FinalStab, for example, for all values of ε that
were tested. A direct comparison between Random and QBag – the best method
on most of the statistics – does in fact reveal significant differences. Table 3(a)
compares QBag and Random on the structural FinalStab measure. Here, a win
is recorded for the sampling method that achieves the higher weighted score on
a given dataset. QBag obtains the most wins under all 6 conditions, and the
Wilcoxon signed-ranks test, which is recommended when comparing two meth-
ods [16], finds that the QBag scores are significantly better in 4 of these cases.
With regard to the PrevStab scores, there were no significant differences detected
between QBag and Random by this test.

Comparison of Splitting Criteria. The weighted scores obtained when using
the entropy splitting criterion were compared to those obtained with DKM, and
the Wilcoxon signed-ranks tests was used to assess statistical significance. With
respect to error rates, DKM was significantly more accurate than entropy when
QBag or BootLV were used (α = .10), and DKM never recorded less than 9
wins with any of the other methods. DKM frequently grew smaller trees, but
the difference was significant only with BootLV (α = .10). Remarkably, DKM
yielded higher scores on the majority of datasets for every sampling method
and every measure of structural stability, at all values of ε. We highlight the
comparison between DKM and entropy when using QBag, as it has been shown in
previous sections to be the superior sampling method. As the data in Table 3(b)
reveals, the FinalStab and PrevStab scores for QBag improved significantly when
DKM was used to grow trees. Similarly, QBag’s RunStab scores improved for all
values of ε when using DKM instead of entropy. Here, permitting a small margin
of error between continuous thresholds revealed that DKM produced decision
regions that were more similar than those formed with entropy. Finally, the
semantic stability of C4.5 was less influenced by the choice of splitting criterion,
as significant differences were detected only for PrevStab when using BootLV
(α = .05) or Random (α = .10). In both instances, DKM was superior.

6 Conclusions

We have presented a methodology for evaluating the stability of decision tree
learners in the context of active learning, which includes a novel measure of deci-
sion tree stability. The main conclusions drawn from our experiments are, first of
all, that query-by-bagging (QBag) is the method of choice for training a single,
interpretable decision tree, when using the C4.5 algorithm. QBag was found to
be superior based on many of the stability measures, and was never significantly
less stable than any other sampling method. Moreover, QBag produced the most
accurate decision trees, and so the increased stability did not correspond with
higher error rates. Although QBag yielded trees that were larger, on average,
than those of the competing methods, we provided evidence that this would not
usually be detrimental to intelligibility. The second important finding is that the
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DKM splitting criterion improves the stability and accuracy of C4.5 in the ac-
tive learning setting. In particular, since QBag performed better with DKM, this
combination is recommended for training a single tree. It is important to empha-
size that these conclusions are based on average performance across datasets, as
no sampling method was superior on all the datasets that were tested.
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