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Abstract

In this paper we show that the move pruning method
we presented at SoCS last year sometimes prunes
all the least-cost paths from one state to another.
We present two examples exhibiting this erroneous
behaviour–a simple, artificial example and a slightly
more complex example that arose in last year’s exper-
iments. We then formally prove that a simple modi-
fication to our move pruning method makes it “safe”,
i.e., it will never prune all the least-cost paths between
a pair of states. Finally, we present the results of
rerunning last year’s experiments with this provably
safe version of move pruning and show that last year’s
main conclusions still hold, namely: (1) in domains
where there are short redundant sequences move prun-
ing produces substantial speedups in depth-first search,
and (2) in domains where the only short redundant se-
quences are 2-cycles, move pruning is faster than parent
pruning by a factor of two or more.

Introduction
Last year we (Burch and Holte 2011) presented a gener-
alization of the method for eliminating redundant oper-
ator sequences (“move pruning”) introduced by Taylor
and Korf (1992; 1993) and showed that it could vastly
reduce the size of a depth-first search tree in spaces con-
taining short cycles or transpositions. We claimed our
method could be safely applied to any state space repre-
sented using the PSVN language. The first contribution
of the present paper is to show that this claim is false:
there are state spaces representable in PSVN for which
the method we presented last year produces incorrect
results; in particular, that method sometimes removes
all least-cost paths to the goal and can even render the
goal unreachable when it is, in fact, reachable.

The second contribution of this paper is to formally
prove that a slight modification of the method we pre-
sented last year is correct (“safe”): for every pair of
states, the revised method is guaranteed to leave un-
pruned at least one least-cost path between them. This
theorem also shows that Taylor and Korf’s original re-
sults on Rubik’s Cube are correct because of the lexi-
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cal ordering on operators they used to choose between
equivalent sequences. Finally, our theorem shows that
using move pruning to eliminate cycles is always safe.

The third contribution of this paper is to rerun last
year’s experiments with the provably safe variation of
our method to examine its pruning power.

Examples of Erroneous Move Pruning
The fact that move pruning, as we implemented it last
year, could produce erroneous behaviour came to our
attention after last year’s symposium when we were
testing our method on the Gripper domain from the
International Planning Competition.1 As we will see
below, the problem also arises with the Work or Golf
state space used in last year’s paper: some of the results
reported for that state space last year are incorrect.

From these counterexamples we distilled a simple,
generic counterexample that challenges the fundamen-
tal principle underlying our system, and Taylor and
Korf’s, which we described last year as follows:

following Taylor and Korf we can prune move se-
quence B if there exists a move sequence A such
that (i) the cost of A is no greater than the cost
of B, and, for any state s that satisfies the pre-
conditions of B, both of the following hold: (ii) s
satisfies the preconditions of A, and (iii) applying
A and B to s leads to the same end state.

We say that B is redundant with A, denoted B ≥ A,
if A and B meet the three conditions just stated. We
write B ≡ A (B is equivalent to A) if B ≥ A and
A ≥ B, and write B > A (strict inequality) if B ≥ A
and A 6≥ B.

Our counterexample is as follows. Suppose that abd
and acd are the only least-cost paths from state s to
state t. If ab > ac then the principle above says we need
not execute ab, which means abd will not be executed.
That is fine because acd will be executed. But if we also
have cd > bd, then the principle above says we need not
execute cd, which means acd will not be executed. So if
we apply the principle twice (once for each redundancy)
neither abd nor acd will be executed and all least-cost
paths from s to t will be pruned away.

1http://ipc.icaps-conference.org/



To see that it is possible for a, b, c, and d to exist
such that ab > ac and cd > bd, here is a very simple
example. In this example a state is described by three
state variables and is written as a vector of length three.
The value of each variable is either 0, 1, 2, or 3. The
operators are written in the form LHS → RHS where
LHS is a vector of length three defining the operator’s
preconditions and RHS is a vector of length three defin-
ing its effects. The LHS may contain variable symbols
(Xi in this example); when the operator is applied to
a state, the variable symbols are bound to the value
of the state in the corresponding position. Precondi-
tions test either that the state has a specific value for
a state variable or that the value of two or more state
variables are equal (this is done by having the same
Xi occur in all the positions that are being tested for
equality). For example, operator a below can only be
applied to states whose first state variable has the value
0 and whose second and third state variables are equal.
A set of operators for which ab > ac and cd > bd is the
following (all operators have a cost of 1).

a : 〈0, X1, X1〉 → 〈1, 0, X1〉
b : 〈1, X2, 0〉 → 〈2, 0, 0〉
c : 〈1, X3, X4〉 → 〈2, X4, X3〉
d : 〈2, 0, 0〉 → 〈3, 1, 1〉

The preconditions and net effects for ab and ac are:
ab : 〈0, 0, 0〉 → 〈2, 0, 0〉
ac : 〈0, X1, X1〉 → 〈2, X1, 0〉

Clearly, the preconditions of ab are more restrictive
than those of ac and the effects and costs of the se-
quences are the same when the preconditions of ab are
satisfied. Hence, ab > ac.

The preconditions and net effects for bd and cd are:
bd : 〈1, X2, 0〉 → 〈3, 1, 1〉
cd : 〈1, 0, 0〉 → 〈3, 1, 1〉

The preconditions of cd are more restrictive than those
of bd and the effects and costs of the sequences are the
same when the preconditions of cd are satisfied. Hence,
cd > bd. If the start state is 〈0, 0, 0〉 and the goal state
is 〈3, 1, 1〉 the only least-cost paths from start to goal
are abd and acd, both of which will be pruned away.

This is an artificial example created to be as simple as
possible. Something very much like it arises in sliding-
tile puzzles having more than one blank, such as Work
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Figure 1: Two states of the 3x3 sliding-tile puzzle with
3 blanks. The black squares are tiles that are not moved
in any of the shortest paths that transform the state on
the left to the state on the right. In the circles are the
row and column numbers.

or Golf. For example, consider the two states of a 3x3
sliding-tile puzzle with 3 blanks shown in Figure 1. The
shortest path transforming the state on the left to the
state on the right has four moves. There are eight such
paths. If move pruning is applied to all sequences of
length 3 or less, all of these four-move paths are pruned.

Table 1 shows three of the 2- and 3-move opera-
tor sequences our method identified as redundant and
the sequence with which each was redundant. To il-
lustrate how our method identifies these redundancies,
the derivation of Pruning Rule 2 is given in the Ap-
pendix. In Table 1 operator names indicate the row
and column of the tile to be moved with digits and
the direction of movement with a letter. For exam-
ple 12R is the operator that moves the tile in Row 1
(top row), Column 2 (middle column) to the right (R).
The first row of the table (Pruning Rule 1) indicates
that the 2-move sequence 12R-11D is equivalent (“≡”)
to 11D-12R. Because they are equivalent, either one
could be eliminated in favour of the other; our method
eliminated 12R-11D because it is lexically “larger than”
11D-12R. The other two rows in Table 1 show operator
sequences that are not equivalent (“>”): the sequence
in the “Redundant” column has the same effects but
more restrictive preconditions than the sequence in the
“Because of” column. In such cases there is no choice
about which sequence to eliminate.

The three pruning rules in Table 1 interact in a way
that is exactly analogous to how ab > ac and cd > bd
interacted to prune both abd and acd in our simple ex-
ample above. Each oval in Figure 2 represents an op-
timal (4-move) sequence to transform the left state in
Figure 1 to the right state. Each one of these sequences
contains one of the 2- or 3-move sequences identified
as redundant in Table 1—the redundant subsequence is
underlined. The arrows indicate the operator sequence
that is produced when the redundant subsequence is
replaced by the corresponding “Because of” sequence
in Table 1. For example, the sequence in the upper

Pruning Redundant
Rule # Sequence Because of

1 12R-11D ≡ 11D-12R
2 11D-12R-21R > 12R-11R-12D
3 11R-12D-31U > 11D-21R-31U

Table 1: Pruning rules involved in Figure 2.

11D-12R-21R-31U 

12R-11R-12D-31U 12R-11D-21R-31U 

Pruning Rule 1 Pruning Rule 2 

Pruning Rule 3 

Figure 2: Each oval represents an optimal sequence
transforming the state on the left of Figure 1 to the
state on the right.



left oval (12R-11D-21R-31U) contains 12R-11D as its
first two operators. Table 1 indicates that this is re-
dundant with 11D-12R. Applying this substitution to
the sequence in the upper left oval produces the se-
quence in the bottom oval. This sequence contains the
subsequence identified as redundant in the second row
(Pruning Rule 2) of Table 1, and if that subsequence is
replaced by the corresponding “Because of” sequence,
the operator sequence in the upper right oval is pro-
duced. The last three operators in this sequence have
been found redundant (Pruning Rule 3); replacing them
with the alternative brings us literally full circle, back
to the operator sequence in the upper left oval. Put an-
other way, since all of these operator sequences contain
a subsequence declared redundant by our move prun-
ing system, all of them will be pruned. The other five
optimal (4-move) sequences for transforming the left
state in Figure 1 to the right state also all contain a
subsequence declared redundant by our move pruning
system, so all of them will be pruned too.

The important lesson from these examples is that
even if the redundancy of each operator sequence is
correctly assessed, a set of redundancies can interact
to produce incorrect behaviour. We therefore need to
develop a theory of when a set of redundancies does
not prune all least-cost paths. In the next section we
present one such theory.

Theory
The empty sequence is denoted ε. If A is a finite op-
erator sequence then |A| denotes the length of A (the
number of operators in A, |ε| = 0), cost(A) is the sum of
the costs of the operators in A (cost(ε) = 0), pre(A) is
the set of states to which A can be applied, and A(s) is
the state resulting from applying A to state s ∈ pre(A).

The following is the formalization of the English at
the beginning of this paper.
Definition 1 Operator sequence B is “redundant” with
operator sequence A iff the following conditions hold:

1. cost(B) ≥ cost(A)
2. pre(B) ⊆ pre(A)
3. s ∈ pre(B)⇒ B(s) = A(s)
As before, we write B ≥ A, B > A, and B ≡ A to
denote that B is redundant with A, strictly redundant
with A, or equivalent to A, respectively.
Lemma 1 Let B ≥ A according to Definition 1 and let
XBY be any least-cost path from any state s to state
t = XBY (s). Then XAY is also a least-cost path from
s to t.
Proof. There are three things to prove.
1. s ∈ pre(XAY ).

Proof: X can be applied to s because XBY can be
applied to s. A can be applied to X(s) because B can
be applied to X(s) and pre(B) ⊆ pre(A) (because
B ≥ A). Y can be applied to A(X(s)) because Y
can be applied to B(X(s)) and A(X(s)) = B(X(s)).
Therefore s ∈ pre(XAY ).

2. XAY (s) = t.
Proof: Since t = Y (B(X(s))) and B(X(s)) =
A(X(s)) (see the Proof of 1.), we get t =
Y (A(X(s))) = XAY (s).

3. cost(XBY ) = cost(XAY ).
Proof: cost(XBY ) ≥ cost(XAY ) follows from the
cost of a sequence being additive (cost(XBY ) =
cost(X) + cost(B) + cost(Y )) and cost(B) ≥ cost(A)
(because B ≥ A). Since XBY is a least-cost path
from s to t and XAY is also a path from s to t,
cost(XBY ) = cost(XAY ).

�

We now introduce a total ordering, O, on operator se-
quences. We will use B >O A to indicate that B is
greater than A according to O. O has no intrinsic
connection to redundancy so it can easily happen that
B ≥ A according to Definition 1 but B <O A.
Definition 2 A total ordering on operator sequences
O is “nested” if ε <O A for all A 6= ε and B >O A
implies XBY >O XAY for all A, B, X, and Y .
Example 1 The most common nested ordering is
“length-lexicographic order”, which is based on a total
order of the operators o1 <O o2 <O .... For arbitrary
operator sequences A and B, B >O A iff |B| > |A| or
|B| = |A| and ob >O oa where ob and oa are the left-
most operators where B and A differ (ob is in B and
oa is in the corresponding position in A).
Definition 3 Given a nested ordering O, for any pair
of states s, t define min(s, t) to be the least-cost path
from s to t that is smallest according to O (min(s, t) is
undefined if there is no path from s to t).
Theorem 2 Let O be any nested ordering on operator
sequences and B any operator sequence. If there exists
an operator sequence A such that B ≥ A according to
Definition 1 and B >O A, then B does not occur as a
consecutive subsequence in min(s, t) for any states s, t.
Proof. By contradiction. Suppose there exist s, t such
that min(s, t) = XBY for some such B and some X
and Y . Then by Lemma 1 XAY is also a least-cost path
from s to t. But XBY >O XAY (because O is a nested
ordering and B >O A), contradicting XBY being the
smallest (according to O) least-cost path from s to t.

�

From this theorem it immediately follows that a move
pruning system that restricts itself to pruning only op-
erator sequences B that are redundant with some oper-
ator sequence A and greater than A according to a
nested ordering will be “safe”: it will not eliminate
all the least-cost paths between any pair of states. In
our PSVN implementation of move pruning we gener-
ate move sequences in increasing order according to
a nested ordering (the one described in Example 1).
What went wrong in the implementation reported last
year is that when we generated a new move sequence
B we did two redundancy checks against each previ-
ously generated, unpruned sequence A: we checked
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Figure 3: Goal state for the Work or Golf puzzle. It
has eight 1x1 tiles with letters and 2 irregularly shaped
tiles, shown in black. There are 4 empty locations.

both B ≥ A and A ≥ B. If the latter occurred, we
would prune A even though B >O A. Theorem 2 tells
us that all we have to do to correct our implementation
is to remove the check of A ≥ B. This means we might
do less pruning than before, but it guarantees the prun-
ing will be safe. The experimental section below repeats
our experiments from last year with this modification.

Theorem 2 also proves that Taylor and Korf’s results
on Rubik’s Cube are correct. They used the nested or-
dering described in Example 1 and tested the equality of
the net effects of two operator sequences, the only part
of Definition 1 that needs to be tested when operators
have no preconditions.

Finally, Theorem 2 shows that cycle elimination (e.g.,
parent pruning) via move pruning is safe. This is cap-
tured in the following Corollary.

Corollary 3 Let O be any nested ordering on operator
sequences. For all B such that B ≥ ε according to Defi-
nition 1, B does not occur as a consecutive subsequence
in min(s, t) for any states s, t.

Proof. By definition B >O ε and therefore all the
premises of Theorem 2 are satisfied. �

Experimental Results
In our 2011 paper we evaluated the effectiveness of
move pruning on eight different state spaces: the 16-
arrow puzzle, the 10-blocks blocks world, 4-peg Towers
of Hanoi with 8 disks, the 9-pancake puzzle, the 3x3
sliding-tile puzzle (8-puzzle), 2x2x2 Rubik’s cube, Top-
Spin with 14 tiles and a 3-tile turnstile, and the Work or
Golf puzzle, whose goal state is shown in Figure 3. For
each puzzle, we compared the number of nodes gener-
ated, and execution time, of three variations of depth-
first search (DFS) with a depth bound: (1) DFS with
parent pruning (length 2 cycle detection) performed by
comparing a generated state to the parent of the state
from which it was generated, (2) DFS with our move
pruning method applied to sequences of length L = 2
or less, and (3) DFS with our move pruning method
applied to sequences of length L = 3 or less.

Here we repeat these experiments but with the modi-
fication to the move pruning algorithm described above,
which guarantees that the move pruning is safe. The
results are shown in the first eight rows of Table 2. All
experiments were run on the same machine as last year
(2.83GHz Core2 Q9550 CPU with 8GB of RAM). Node

counts (in thousands of nodes) and computation times
(in seconds) are totals (not averages) across 100 ran-
domly generated start states. In a few cases, we had
to generate a new set of start states instead of using
exactly the same start states as last year, which means
the results could be slightly different than last year’s
even if the effect of move pruning is the same. Also,
changes have been made to the PSVN compiler, which
has affected the execution times for some of the spaces.
Less than 6 seconds were required to do the move prun-
ing analysis for L = 2 and only three domains required
more than 19 seconds for L = 3. The results in Table 2
lead to the same conclusions as last year. In domains
where there are redundant short sequences beyond the
2-cycles detected by parent pruning, move pruning pro-
duces substantial speedups, ranging from 6.72x for Ru-
bik’s Cube to over 9200x for the Arrow puzzle. In do-

State d DFS+PP DFS+MP DFS+MP
Space L=2 L=3

16 arrow ? 3,277 3,277
puzzle 15 >3600s 0.39s 0.39s

0.07s 18.58s
10 blocks 352,028 352,028 352,028

world 11 25.02s 12.23s 12.53s
5.97s 8m 27s

Towers 1,422,419 31,673 9,060
of 10 97.02s 1.45s 0.49s

Hanoi 0.30s 3m 43s
pancake 5,380,481 5,380,481 5,288,231
puzzle 9 246.49s 115.22s 111.18s

0.01s 0.02s
368,357 368,357 368,357

8-puzzle 25 24.77s 10.40s 10.40s
0.01s 0.08s

Rubik’s 2,715,477 833,111 515,614
cube 6 132.74s 20.00s 13.35s
2x2x2 0.02s 1.10s

? 2,165,977 316,437
TopSpin 9 >3600s 73.80s 12.59s

0.00s 1.11s
Work ? 209,501 58,712

or 13 >3600s 16.44s 5.14s
Golf 2.98s 15m 4s

9,794,961 590,870 25,982
Gripper 14 544.85s 17.22s 0.95s

0.08s 0.85s

Table 2: The first two columns indicate the state space
and the depth bound used. The other columns give
results for each DFS variation. In each results cell the
top number is the total number of nodes generated, in
thousands, to solve all the test problems. The number
below that is the total time, in seconds, to solve all the
test problems. In the DFS+MP columns the bottom
number is the time (“m” for minutes, “s” for seconds)
needed for the move pruning analysis.



mains where the only redundant short sequences are
2-cycles, move pruning is faster than parent pruning
based on state comparison by a factor of two or more.

The last row in Table 2 is new, it is for the Gripper
domain. In this domain, there are two rooms (Room1

and Room2) and B balls. In the canonical start and
goal states the balls start in Room1 and the goal is
to move them all to Room2. Movement is done by a
robot that has two hands. The operators are “pickup
ballk with hand h” (where h is either Left or Right),
“change room”, and “put down the ball in hand h”. It
is an interesting domain in which to study move prun-
ing because of the large number of alternative optimal
solutions: the balls can be moved in any order, any pair
of balls can be carried together, and there are eight dif-
ferent operator sequences for moving a specific pair of
balls between rooms. The results in Table 2 are for
B = 10, which has 68,608 reachable states, and are
for only one start state (all the balls and the robot in
Room1), which has an optimal solution length of 29.
As can be seen, even just pruning short redundant se-
quences (L = 2 or 3) has a very large effect (over 500x
speedup for L = 3). For B = 10 it is possible to dis-
cover redundant sequences up to length L = 6 in just
under nine hours using less than 40MB of space to store
the results. If this is done, the number of nodes gener-
ated to depth 14 is 368 thousand and the time drops to
0.02 seconds, over 23, 000 times faster than DFS with
parent-pruning. With L = 6 move pruning, depth-first
search can fully explore to depth 29 (the solution depth
for B = 10) in 46 seconds. The number of nodes gen-
erated is 157, 568, 860.

Related Work
Wehrle and Helmert (2012) have recently analyzed tech-
niques from computer-aided verification and planning
that are closely related to move pruning. They divide
the techniques into two categories. State reduction tech-
niques reduce the number of states that are reachable
while still guaranteeing the cost to reach the goal from
the start state remains unchanged. Transition reduc-
tion techniques reduce the number of state transitions
(“moves”) considered during search without changing
the set of reachable states or the cost to reach a state
from the start state. Move pruning is a transition re-
duction technique.

The most powerful transition reduction technique
discussed by Wehrle and Helmert is the “sleep sets”
method (Godefroid 1996). Sleep sets exploit the com-
mutativity of operators.2 To illustrate the key idea,
suppose move sequence A contains an operator c that
commutes with all the other operators in A. Then c can
be placed anywhere in the sequence, with each different
placement creating a different sequence that is equiva-
lent to A. For example, if A is o1o2c and c commutes
with o1 and o2 then sequences o1co2 and co1o2 are both
equivalent to A. The sleep set of a node is the set of

2Operators o1 and o2 are commutative if o1o2 ≡ o2o1.

operators that do not have to be applied at that node
because of this commutativity principle.

Sleep sets are less powerful than move pruning in
some ways and more powerful in others. They are less
powerful because they consider only one special kind
of redundancy—commutativity of individual operators.
Move pruning with L = 2 will detect all such com-
mutative relations, but will also detect relations be-
tween sequences that do not involve the same opera-
tors, such as o1o2 ≡ o3o4, and strict redundancies such
as o1o2 > o2o1. In addition, move pruning can be ap-
plied with L > 2.

On the other hand, sleep sets can eliminate sequences
that are not eliminated by move pruning, as we have
implemented it, because sleep sets can prune arbitrar-
ily long sequences even if not all the operators in the
sequence commute with one another. Continuing the
above example, if the ordering on operators used by
move pruning had o2 <O c <O o1 and move pruning
considered only sequences of length L = 2 or less, then
it would permit both o1o2c and co1o2 to be executed
whereas the sleep set method would only execute one
of them.3

A different, but related approach to avoiding redun-
dant move sequences is state space “factoring” (Lansky
and Getoor 1995; Lansky 1998; Amir and Engelhardt
2003; Brafman and Domshlak 2006; Fabre et al. 2010;
Guenther, Schiffel, and Thielscher 2009). The ideal
situation for factoring is when the given state space
is literally the product of two (or more) smaller state
spaces; a solution in the original state space can then
be constructed by independently finding solutions in
the smaller state spaces and interleaving those solu-
tions in any manner whatsoever. The aim of a fac-
toring system is to identify the smaller state spaces
given the definition of the original state space. If
the smaller spaces are “loosely coupled” (i.e., not per-
fectly independent but nearly so) factoring can still
be useful, but requires techniques that take into the
account the interactions between the spaces. Tech-
niques similar to state space factoring have been de-
veloped for multiagent pathfinding (Sharon et al. 2011;
Standley 2010) and additive abstractions (cf. the inde-
pendent abstraction sets defined by Edelkamp (2001)
and the Factor method by Prieditis (1993)).

Transposition tables (Akagi, Kishimoto, and Fuku-
naga 2010) represent an entirely different approach to
eliminating redundant operator sequences: they store
states that have been previously generated and test
each newly generated state to see if it is one of the
stored states. Like parent pruning, transposition ta-
bles are slower at eliminating redundant sequences than
move pruning because they involve generating a state
and then processing it to determine if it is a duplicate,
whereas move pruning simply avoids generating dupli-

3This is Wehrle and Helmert’s Example 1 adapted to our
notation.



cate states.4 Transposition tables are not strictly more
powerful than move pruning because, with transposi-
tions tables, a state might be generated by a subopti-
mal path before being generated by an optimal path. If
the two paths are length L or less, this will not happen
with move pruning. More importantly, in large state
spaces there is not enough memory available to store
all the distinct generated states. This forces transposi-
tion tables to be incomplete, i.e., to detect only a subset
of the duplicate states. The memory required by move
pruning, by contrast, is Θ(mL), where m is the num-
ber of operators, which is usually logarithmic in the
number of states in a combinatorial state space, and
L is the maximum length of the sequences being con-
sidered. The memory required for move pruning will
therefore usually be small compared to the number of
distinct generated states. For example, for the Arrow
puzzle the move pruning table when L = 2 is Θ(a2)
in size, where a is the number of arrows, whereas the
number of reachable states is 2a−1 and for the (n× n)-
sliding tile puzzle, the move pruning table when L = 2
is Θ(n2) in size whereas the number of reachable states
is (n2)!/2. This means move pruning can be effective in
situations where transposition tables would be too small
to be of much use. For example, in the Gripper domain
(B = 10) the move pruning table when L = 2 requires
7 kilobytes and allows a complete depth-first search to
depth 14 to finish in 17.22 seconds (see Table 2). If our
transposition table implementation is restricted to use
7 kilobytes, depth-first search is unable to finish depth
13 in 6 minutes. In general, the duplicates eliminated
by move pruning and by incomplete transposition tables
will be different and one would like to use both together.
However, we showed in last year’s paper that the two
methods can interact with each other to produce erro-
neous behaviour (rendering some reachable states un-
reachable). The modification we have presented in this
paper to make move pruning safe does not make it safe
to use in combination with transposition tables.

Conclusions

In this paper we have shown that the move pruning
method presented last year would, in some circum-
stances, prune all the least-cost paths from one state to
another. We have presented a simple, abstract example
in which move pruning will behave erroneously and a
slightly more complex example that arose in our experi-
ments last year with the Work or Golf domain. We then
formally proved that a simple modification—requiring
move pruning to respect a fixed nested ordering on oper-
ator sequences—was “safe”, i.e., would never prune all
the least-cost paths between a pair of states. Imposing

4The efficiency gained by avoiding generating unneeded
nodes, as opposed to generating and testing them, is the
entire motivation for Enhanced Partial Expansion A* (Fel-
ner et al. 2012), which uses a data structure (the “OSF”)
specifying when an operator should be applied that is much
like the move pruning table in our system.

this restriction did not noticeably reduce the amount of
pruning done in our experiments compared to last year,
but in principle an unlucky choice of the ordering could
substantially reduce the amount of pruning done—in
the extreme case, the ordering could prevent any move
pruning from being done (this would happen if B <O A
for every pair of operator sequences A and B such that
B > A). There is, therefore, more research to be done
on how to maximize the amount of pruning that can be
done while remaining safe.
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Appendix. Derivation of Pruning Rule 2
In PSVN states are represented by vectors of a fixed
length. In this example, we will use vectors of length 6,
where the first 3 positions of the vector represent Row 1
(Columns 1, 2, and 3) and the next 3 represent Row 2.
In reality, there would be 3 additional vector positions
for the third row, but since they are not needed in this
example they are omitted for brevity.

An operator in PSVN is of the form LHS => RHS where
LHS and RHS are both vectors the same length as a state
vector. LHS specifies the operator’s preconditions, RHS
specifies its effects. Figure 4 shows the PSVN definitions
for the operators involved in Pruning Rule 2. A cap-
ital letter (V, W,...) is a variable symbol that will be
bound to the corresponding value in the state vector
when the operator is applied to a state. b is a con-
stant used to represent that the corresponding puzzle
position is blank. A dash (-) in the LHS indicates that
the corresponding state position is irrelevant, a dash in
the RHS indicates that the operator does not change the
value in that position.

The first step in deriving a pruning rule is to com-
pute the macro-operators for the two sequences (in this
example, 11D-12R-21R and 12R-11R-12D). A macro-
operator for an operator sequence has exactly the same
form as an ordinary operator but its LHS specifies the

V - - b - - => b - - V - - LABEL 11D
- W b - - - => - b W - - - LABEL 12R
- - - X b - => - - - b X - LABEL 21R
Y b - - - - => b Y - - - - LABEL 11R
- Z - - b - => - b - - Z - LABEL 12D

Figure 4: PSVN rules involved in Pruning Rule 2.



preconditions required to execute the entire sequence
and its RHS specifies the net effect of executing the en-
tire sequence.

The macro-operator is built up through a “move com-
position” process starting with the identity operator

A B C D E F => A B C D E F

and updating it with one operator at a time from the
sequence to create the macro-operator for the entire
sequence. The update process involves two steps. The
first is to “unify” the RHS of the current macro-operator
with the LHS of the next operator. This determines
whether the sequence can be executed at all and, if so,
what constraints there are on the variables (A, B,...) in
the LHS of the macro-operator. In our example, unify-
ing the RHS of the current macro-operator (the identity
operator) with operator 11D, adds the constraint that
D=b. The second step in the update process is to up-
date the effects of the macro-operator. This is simple
once the first step has been done, because that step has
bound symbols in the macro-operator’s RHS to the vari-
able symbols in the operator’s LHS. Transferring these
to the operator’s RHS gives the RHS for the updated
macro-operator. In our example, the update process
based on 11D produces the macro-operator

A B C b E F => b B C A E F.

The process is then repeated using this updated
macro-operator and the next operator in the sequence,
12R in this example. First the RHS of the macro-
operator, b B C A E F, is unified with the LHS of 12R.
This produces the constraint C=b and bindings which,
when transferred to the RHS of 12R, result in the follow-
ing macro-operator:

A B b b E F => b b B A E F.

The same process is applied with this macro-operator
and the third operator in the sequence, 21R, to produce
the final macro-operator for 11D-12R-21R:

A B b b b F => b b B b A F.

Applying the move composition process to operator
sequence 12R-11R-12D produces this macro-operator:

A B b D b F => b b B D A F.

The two macro-operators can now be compared, us-
ing Definition 1, to determine if one is redundant with
the other. First, their costs are the same (3). Sec-
ond, it is easy for the PSVN compiler to determine that
any state that matches the LHS of the macro-operator
for 11D-12R-21R will also match the LHS of the macro-
operator for 12R-11R-12D, since the LHS’s are identical
except that the former requires the fourth vector posi-
tion to be b whereas the latter allows it to be any value.
Finally, it is easy for the PSVN compiler to determine
that the net effect of both sequences (the RHS of both
macro-operators) is identical for any state that matches
the LHS of the macro-operator for 11D-12R-21R. By
this means the PSVN compiler establishes that 11D-12R-
21R > 12R-11R-12D. Last year’s system immediately
declared 11D-12R-21R redundant. As we have shown

in this paper, this is not safe to do, in general. The
correction we propose in this paper is to only declare
11D-12R-21R redundant if it follows 12R-11R-12D in
the fixed nested order being used.
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