Where Do Heuristics Come From? Part 2

Robert C. Holte
Computing Science Department
University of Alberta

© 2005, Robert Holte

Outline

Part 1: Introduction
Part 2: Details
 – Defining Abstractions
 – Choosing Good Abstractions
 – Computing Abstract Distances
 – Implementation Issues
Part 3: Enhancements

Defining Abstractions

Domain Abstraction

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank ▢ ▢ ▢ ▢ ▢ ▢ ▢ ▢
Finer-grained Domain Abstraction

Possible Domain Abstractions

- Easy to enumerate all possible domain abstractions

 Domain = blank 1 2 3 4 5 6 7 8
 Abstract = blank □ □ □ □ □ □ □ □

- They form a lattice, e.g.

 Domain = blank 1 2 3 4 5 6 7 8
 Abstract = blank □ □ □ □ □ □ □ □

 is “more abstract” than the domain abstraction above

The Arrow Puzzle

Solve a Subproblem

Solve any 4-arrow subproblem, e.g.

operator A: flip Arrow1, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3, flip Arrow4
operator D: flip Arrow4, flip Arrow5

For many problems this will reduce the state space exponentially while only reducing the solution lengths linearly, so heuristics are accurate and quick to calculate.
Projection

Remove all references to Arrow4

operator A: flip Arrow1, flip Arrow2
operator B: flip Arrow2, flip Arrow3
operator C: flip Arrow3
operator D: flip Arrow5

Towers of Hanoi puzzle

3-disk TOH State Space

Abstract State = Group of States

This grouping corresponds to solving the subproblem with the 2 largest disks.
Spoiled for Choice

- Any way of doing any of these methods produces an admissible and consistent heuristic.
- And, the techniques can be used in combination with one another.
- Moreover, domain abstraction and projection produce different heuristics when applied to different encodings of the search space.

Problem: Non-surjectivity

1x3 sliding tile puzzle

Non-surjective Abstraction

Domain = blank 1 2
Abstract = blank 1 blank
Why Does This Happen?

Original space is actually a set of isolated components.

... etc.

Why Does This Happen?

Abstraction makes two states in different components identical.

Choosing Good Abstractions

Size Matters

nodes expanded (A*)

of abstract states
Korf & Reid (1998)

• Total nodes expanded = \(\sum N(j) \times P(j,d-j) \)
 – \(N(j) \) = # nodes at level \(j \) in the brute-force tree
 – \(P(j,x) \) = % of nodes, \(n \), at level \(j \) with \(h(n) \leq x \)
• \(N(j) \approx b^j \)
 (\(b \) is the branching factor in the brute force tree)
• \(P(j,d-j) \approx ??? \)
 – for a pattern database (defined in a few slides)
 this can be computed exactly *

* assuming every entry in the PDB represents the same number of states
 and that \(j \) can be ignored

Prediction of Search Time (A*)

Good, Easy-to-Compute Measures

• average value in a Pattern Database
• the value of \(h(\text{start}) \)
• When there are non-identical edge costs:
 Aim to minimize the discrepancy of the costs of edges that get merged.
Calculating $h(s)$

Given a state, s

\[
\begin{array}{ccc}
8 & 1 & 4 \\
3 & 5 & \\
6 & 7 & 2 \\
\end{array}
\]

Compute the corresponding abstract state, $\phi(s)$

\[h(s) = \text{distance}(\phi(s), \phi(\text{goal})) = 2\]

Two Main Approaches

• Pattern Databases
 – all possible $h(s)$ values calculated in advance, in a preprocessing step
 – Culberson & Schaeffer (1996)

• Hierarchical Heuristic Search
 – $h(s)$ values calculated on demand
 – Holte et al. (1996), Hierarchical A^*
 – Holte et al. (2005), Hierarchical IDA*

Pattern Databases

• Enumerate the entire abstract space as a preprocessing step (e.g. by breadth-first search backwards from $\phi(\text{goal})$).

• Store distance-to-goal for every abstract state in a lookup table (PDB).

• During search in the original state space, $h(s)$ is computed by a lookup in the PDB.

Abstract State Space
Pattern Database

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Distance to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 1 2 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Distance to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 3 4</td>
</tr>
</tbody>
</table>

Hierarchical Heuristic Search

- No preprocessing.
- When \(h(s) \) is needed, it is calculated by searching for a shortest path in the abstract space from \(\varphi(s) \) to \(\varphi(\text{goal}) \).
- Need to cache all information about abstract distance-to-goal and reuse, otherwise this will be hopelessly inefficient.

Code Comparison

PDB has this line:

\[h(s) = \text{PDB}[\varphi(s)] \]

Hierarchical Heuristic Search has:

\[h(s) = \text{search}(\varphi(s), \varphi(\text{goal})) \]

(recursive) call to a search algorithm to compute the abstract distance to goal for state s

Hierarchical Heuristic Search

![Diagram](image)

- \(\varphi_1(S) \)
- \(\varphi_2(\varphi_1(S)) \)
- Original space, \(S \)
Comparison - Time

- Pattern Databases
 - Large preprocessing time
 - 15-puzzle: 2.5 hours*
 - TopSpin: 40 minutes*
 - Very fast h(s) computation during search
 - 15-puzzle instance solved in 0.022 seconds (avg)
- Hierarchical Heuristic Search
 - No preprocessing time
 - Relatively slow h(s) computation

* Times are for the best-performing PDBs. Smaller PDBs take less time to build but take correspondingly longer to solve problems.

Comparison - Memory

- Pattern Databases
 - Perfect hash function
 - No empty hash table entries
 - Each entry stores only a distance (15-puzzle: 1 byte)
 - Only a tiny fraction of entries are needed to solve an individual search problem
- Hierarchical Heuristic Search
 - Imperfect hash function (15-puzzle: 8 bytes)
 - Multiple levels of abstraction, not just one
 - Only store entries needed to solve the given problem

%PDB Entries Actually Needed

<table>
<thead>
<tr>
<th>State Space</th>
<th>PDB size (000s)</th>
<th>#needed (000s)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-puzzle</td>
<td>4,151,347</td>
<td>2,657</td>
<td>0.06</td>
</tr>
<tr>
<td>Macro-15</td>
<td>4,151,347</td>
<td>787</td>
<td>0.02</td>
</tr>
<tr>
<td>(17,4)-TopSpin</td>
<td>57,657</td>
<td>3,423</td>
<td>5.9</td>
</tr>
<tr>
<td>14-Pancake</td>
<td>17,297</td>
<td>229</td>
<td>1.3</td>
</tr>
</tbody>
</table>

When to Use Each Approach?

- If the same abstraction can be used to solve many problems, use PDB.
- If there is only one problem to solve, or a small batch of problems, use Hierarchical Heuristic Search.
Macro-15 puzzle

- Choose tile in same row/column as the blank.
- Slide that tile and all tiles between it and the blank one space towards the blank.
- Branching factor 6

15-puzzle and Macro-15
- Compute Manhattan Distance (MD) for each tile
- Abstract tiles in increasing order of MD, 7 at first level, then 1 per level

TopSpin
- Two possible abstractions
- Compute \(h(\text{start}) \) for each, use the better one

Pancake
- Same for all problems: abstract tokens 1-7, then 8, 9, …
Custom – Individual Problems

<table>
<thead>
<tr>
<th>State Space</th>
<th>Avg. Time (seconds)</th>
<th>Max</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-puzzle (PDB: 9,856)</td>
<td>53</td>
<td>2,383</td>
<td>12</td>
</tr>
<tr>
<td>Macro-15</td>
<td>44</td>
<td>420</td>
<td>29</td>
</tr>
<tr>
<td>TopSpin (PDB: 2,981)</td>
<td>447</td>
<td>1,539</td>
<td>389</td>
</tr>
<tr>
<td>Pancake</td>
<td>84</td>
<td>726</td>
<td>42</td>
</tr>
</tbody>
</table>

Multiple Abstractions

- **15-puzzle and Macro-15**
 - One abstraction abstracts 8 tiles at first level
 - Three abstractions abstract 9 tiles
 - (previous abstraction abstracted 7 tiles, not used now)

- **TopSpin**
 - Abstract tokens 1-9, then 10, 11,…
 - Complementary abstraction (abstracts 9 different tokens at the first level)

- **Pancake**
 - Abstract tokens 1-7, then 8, 9, …
 - Complementary abstraction (abstracts 7 different tokens at the first level)

Max’ing – Batch of Problems

<table>
<thead>
<tr>
<th>State Space</th>
<th>Total Time (secs) (100 problems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-puzzle (PDB: 9,160)</td>
<td>1,662 (PDB = 551 problems)</td>
</tr>
<tr>
<td>Macro-15</td>
<td>1,310</td>
</tr>
<tr>
<td>TopSpin (PDB: 2,981)</td>
<td>3,956 (PDB = 75 problems)</td>
</tr>
<tr>
<td>Pancake</td>
<td>428</td>
</tr>
</tbody>
</table>

Implementation Issues
Pattern Databases

- Ideally, use a perfect hashing function.
- If breadth-first search is used to create the PDB, memory for the Open and Closed lists reduces the memory available for the PDB.
 - May need to use a disk-based implementation of breadth-first search (Korf’s DDD) and other space-saving measures such as Frontier search.
 - Or, use iterative-deepening to create the PDB.

Perfect Hashing Function

- Every time a state, s, is generated need to lookup h(s) in the pattern database.
- PDB[φ(s)] really is PDB[hash(φ(s))]
 - Where hash(x) maps an abstract state, x, to an integer in the range 0...(PDBsize-1).
- Because it is used so often, hash(x) needs to be as efficient as possible.
- We also want it to be perfect so that PDBsize can equal the number of abstract states with no collisions.

Perfect Hashing of Permutations

- Often a state (base-level, not abstract) is a permutation, e.g. the 15-puzzle*.
- Myrvold & Ruskey (2001) give an algorithm for mapping a permutation on N values to an integer 0...(N!-1) and the inverse mapping.
- Both are O(N). (for the 15-puzzle, N=16).
- Their mapping does not give lexicographic order (see Korf 2005 if you want this).

Myrvold & Ruskey Hash Function

Given state S, an array indexed by 0...(N-1) containing the values 0...(N-1).
1. Initialize array W*, W[S[i]]=i for 0≤i≤(N-1)

HASH(N, S, W):
1. IF (N == 1) RETURN(0)
2. D = S[N-1]
3. SWAP(S[N-1], S[W[N-1]])
4. SWAP(W[N-1], W[D])
5. RETURN(D + N*HASH(N-1, S, W))

* W stands for “where”, W[v] is the location of v in S.
Example

S (permutation)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

\[N \text{ Value}(N) = D + N \times \text{Value}(N-1) \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>188 = 2 + 6 \times 31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>31 = 1 + 5 \times 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6 = 2 + 4 \times 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 = 1 + 3 \times 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 = 0 + 2 \times 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hashing Abstract States

- An abstract state has the same number of locations (N) as a state but only K of them contain distinct values \(V_1...V_K\), the rest of the locations contain “don’t care”.
- The array S, in this case, is indexed by 0…(N-1), and \(S[N-a]\) contains the location of value \(V_a\) when 1≤a≤K. \(S[0]...S[N-K-1]\) contain the locations of the “don’t cares”.
- Use the Myrvold & Ruskey hash function but stop the recursion after K iterations.

Abstract State Example

State =

\[
\begin{bmatrix}
4 & 3 & 5 & 2 & 0 & 1 \\
\end{bmatrix}
\]

\[\text{domain} = 0 \ 1 \ 2 \ 3 \ 4 \ 5\]

\[\text{abstract} = x \times 1 \times 3 \times 5\]

Abstract State =

\[
\begin{bmatrix}
x & 3 & 5 & x & x & 1 \\
\end{bmatrix}
\]

Permutation to use in the algorithm:

\[
\begin{bmatrix}
0 & 3 & 4 & 5 & 1 & 2 \\
\end{bmatrix}
\]

Execution of the Algorithm

S (permutation)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

\[N \text{ Value}(N) = D + N \times \text{Value}(N-1) \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>68 = 2 + 6 \times 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>11 = 1 + 5 \times 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2 = 2 + 4 \times 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hierarchical Heuristic Search

• To get high performance, the Hierarchical Search algorithm is more complex than the naïve version described earlier.
 – “optimal path caching”
 – “P-g caching” (better for IDA*: “f backup”)
 – Various code & data structure optimizations

• Selecting abstractions and cache sizes is not automatic, and is non-trivial

Optimal Path Caching

On subsequent searches ...

P-g Caching

P = solution length
g = distance from S to X.
P-g never overestimates distance from X to G

cache[X] = max(cache[X], P-g)

f-backup (for IDA*)

Due to (Reinefeld & Marsland, 1994):
First time we reach X, f(X)=g(X)+h(X).
If children of X all fail, f[X] = min(f[A],f[B])