What is a Pattern Database?

- PDB = a heuristic stored as a lookup table
- Invented by Culberson and Schaeffer (1994)
- created by “abstracting” the state space

Key properties:
- guaranteed to be a lower bound
- guaranteed to be “consistent”
- the bigger the better (as a general rule)

Success Story #1

- 15-puzzle (10^{13} states).
- 2 hand-crafted patterns (“fringe” (FR) and “corner” (CO))
- Each PDB contains >500 million entries
- Used symmetries to compress and enhance the use of the PDBs
- Used in conjunction with Manhattan Distance (MD)

Reduction in size of search tree:
- MD = 346 * max(MD, FR)
- MD = 437 * max(MD, CO)
- MD = 1038 * max(MD, dovetail(FR, CO)) + tricks

Success Story #2

Rich Korf (1997)
- Rubik’s Cube (10^{19} states).
- 3 hand-crafted patterns, all used together (max)
- Each PDB contains over 42 million entries
- took 1 hour to build all the PDBs

Results:
- First time random instances had been solved optimally
- Hardest (solution length 18) took 17 days
- Best known MD-like heuristic would have taken a century
Example: 8-puzzle

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

181,440 states

Domain = blank 1 2 3 4 5 6 7 8

“Patterns” created by domain abstraction

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

This abstraction produces 9 patterns

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank

Pattern Space

Pattern Database

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Distance to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 1 2 2 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Distance to goal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 3 4</td>
</tr>
</tbody>
</table>
Calculating $h(s)$

Given a state in the original problem:

\[
\begin{array}{ccc}
8 & 1 & 4 \\
3 & 5 & \\
6 & 7 & 2 \\
\end{array}
\]

Compute the corresponding pattern:

\[
\begin{array}{ccc}
\text{Red} & \text{Red} & \\
\text{Red} & \text{Red} & \\
\text{Red} & \text{Red} & \\
\end{array}
\]

Look up the abstract distance-to-goal: 2

Domain Abstraction

\[
\begin{array}{ccc}
1 & 2 \\
3 & 4 & 5 \\
6 & 7 & 8 \\
\end{array}
\]

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 0 0 0 6 7 8

30,240 patterns

Fundamental Questions

How to invent effective heuristics?
Create a simplified version of your problem.
Use the exact distances in the simplified version as heuristic estimates in the original.

How to use memory to speed up search?
Precompute all distances-to-goal in the simplified version of the problem and store them in a lookup table (pattern database).

8-puzzle: A^* vs. PDB size

[Graph showing the comparison between A^* nodes expanded and pattern database size]
Automatic Creation of Domain Abstractions

- Easy to enumerate all possible domain abstractions

 Domain = blank 1 2 3 4 5 6 7 8
 Abstract = blank 0 0 0 0 0 0 0 0

- They form a lattice, e.g.

 Domain = blank 1 2 3 4 5 6 7 8
 Abstract = blank 0 0 0 0 0 0 0 0

 is “more abstract” than the domain abstraction above

Efficiency

Time for the preprocessing to create a PDB is usually negligible compared to the time to solve one problem-instance with no heuristic.

Memory is the limiting factor.

Making the Best Use of Memory

- Compress an individual Pattern Database
 - Lossless compression
 - Lossy compression must maintain admissibility
 - Allows you to
 - use a PDB bigger than will fit in memory
 - use multiple PDBs instead of just one

- Merge two PDBs into one the same size
 - Culberson & Schaeffer’s dovetailing
 - Jonathan’s new idea

Compression Results

- 16-disk 4-peg TOH, PDB based on 14 disks
 - No compression: 256Megs memory, 14.3 secs
 - Lossless compression: 256k memory, 23.8 secs
 - Lossy compression: 96Megs, 15.9 secs

- 15-puzzle, additive PDB triple (7-7-1)
 - No compression: 537Megs memory, 0.069 secs
 - Lossy compression, two PDB triples
 537Megs memory, 0.021 secs
Max’ing Multiple Heuristics

• Given heuristics h_1 and h_2 define
 $h(s) = \max (h_1(s), h_2(s))$

• Preserves key properties:
 – lower bound
 – consistency

Question

• Given a fixed amount of memory, M, which gives the best heuristic?
 – 1 pattern database (PDB) of size M
 – max’ing 2 PDBs of size $M/2$
 – max’ing 3 PDBs of size $M/3$
 – etc.

1 large pattern database

2 half-size pattern databases
Many small pattern databases

\[S = \Phi_1 \ldots \Phi_n \]

\[h(s) \quad \ldots \quad h(s) \]

\(\max \)

Rubik’s Cube

<table>
<thead>
<tr>
<th>PDB Size</th>
<th>n</th>
<th>Nodes Generated</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,305,600</td>
<td>8</td>
<td>2,654,689</td>
</tr>
<tr>
<td>17,740,800</td>
<td>6</td>
<td>2,639,969</td>
</tr>
<tr>
<td>26,611,200</td>
<td>4</td>
<td>3,096,919</td>
</tr>
<tr>
<td>53,222,400</td>
<td>2</td>
<td>5,329,829</td>
</tr>
<tr>
<td>106,444,800</td>
<td>1</td>
<td>61,466,541</td>
</tr>
</tbody>
</table>

Summary

<table>
<thead>
<tr>
<th>State Space</th>
<th>Best n</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3x3)-puzzle</td>
<td>10</td>
<td>3.85</td>
</tr>
<tr>
<td>b-pancake</td>
<td>10</td>
<td>8.59</td>
</tr>
<tr>
<td>(8,4)-Topspin (3 ops)</td>
<td>9</td>
<td>3.76</td>
</tr>
<tr>
<td>(8,4)-Topspin (8 ops)</td>
<td>9</td>
<td>20.89</td>
</tr>
<tr>
<td>(3x4)-puzzle</td>
<td>21+</td>
<td>165.5</td>
</tr>
<tr>
<td>Rubik’s Cube</td>
<td>6</td>
<td>23.28</td>
</tr>
<tr>
<td>15-puzzle (additive)</td>
<td>5</td>
<td>2.38</td>
</tr>
<tr>
<td>24-puzzle (additive)</td>
<td>8</td>
<td>1.6 to 25.1</td>
</tr>
</tbody>
</table>

\(\text{RATIO} = \frac{\text{nodes generated using one PDB of size M}}{\text{nodes generated using n PDBs of size M/n}} \)

Rubik’s Cube CPU Time

<table>
<thead>
<tr>
<th>#PDBs</th>
<th>Nodes Ratio</th>
<th>Time Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>23.15</td>
<td>12.09</td>
</tr>
<tr>
<td>6</td>
<td>23.28</td>
<td>14.31</td>
</tr>
<tr>
<td>4</td>
<td>19.85</td>
<td>13.43</td>
</tr>
<tr>
<td>2</td>
<td>11.53</td>
<td>9.87</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

time/node is 1.67x higher using six PDBs
Techniques for Reducing the Overhead of Multiple PDB lookup

Early Stopping

IDA* depth bound = 7
g(s) = 3
⇒ Stop doing PDB lookups as soon as h > 4 is found.

Might result in extra IDA* iterations

PDB₁(s) = 5 ⇒ next bound is 8
PDB₂(s) = 7 ⇒ next bound is 10

Consistency-based Bounding

A
PDB₁(A) = 1
PDB₂(A) = 7

B
Because of consistency:
PDB₁(B) ≤ 2
PDB₂(B) ≥ 6
⇒ No need to consult PDB₁

Experimental Results

• 15-puzzle, five additive PDBs (7-7-1)
 - Naïve: 0.15 secs
 - Early Stopping: 0.10 secs

• Rubik’s Cube, six non-additive PDBs
 - Naïve: 27.125 secs
 - Early Stopping: 8.955 secs
 - Early Stopping and Bounding: 8.836 secs
Why Does Max’ing Speed Up Search?

Static Distribution of Heuristic Values

- Max of 5 small PDBs

Runtime Distribution of Heuristic Values

Saving Space

- If \(h_1 \) and \(h_2 \) are stored as pattern databases, \(\max(h_1(s), h_2(s)) \) requires twice as much space as just one of them.

- How can we get the benefits of \(\max \) without using any extra space?
 - “Dovetail” two PDBs
 - Use smaller PDBs to define max
Dovetailing

- Given 2 PDBs for a state space construct a hybrid containing some entries from each of them, so that the total number of entries is the same as in one of the originals.
- The hope: almost as good as max, but only half the memory.

Dovetailing based on the blank

Any “colouring” is possible

Dovetailing – selection rule

- Dovetailing requires a rule that maps each state, s, to one of the PDBs. Use that PDB to compute h(s).
- Any rule will work, but they won’t all give the same performance.
- Intuitively, strict alternation between PDBs expected to be almost as good as max.
Dovetailing compared to Max’ing

Experimental Results

- Culberson & Schaeffer 1994:
 - Dovetailing two PDBs reduced #nodes generated by a factor of 1.5 compared to using either PDB alone

- Holte & Newton (unpublished):
 - Dovetailing halved #nodes generated on average

Example of Max Failing

<table>
<thead>
<tr>
<th>Depth Bound</th>
<th>h1</th>
<th>h2</th>
<th>max(h1, h2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>19</td>
<td>17</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>110</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>12</td>
<td>142</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>13</td>
<td>200</td>
<td>124</td>
<td>124</td>
</tr>
<tr>
<td>14</td>
<td>440</td>
<td>314</td>
<td>314</td>
</tr>
<tr>
<td>15</td>
<td>801</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>16</td>
<td>1,345</td>
<td>816</td>
<td>816</td>
</tr>
<tr>
<td>17</td>
<td>1,194</td>
<td>949</td>
<td>949</td>
</tr>
<tr>
<td>18</td>
<td>2,079</td>
<td>2,055</td>
<td>2,055</td>
</tr>
<tr>
<td>19</td>
<td>3,430</td>
<td>2,453</td>
<td>2,453</td>
</tr>
<tr>
<td>20</td>
<td>7,197</td>
<td>820</td>
<td>820</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5,581</td>
<td>16,312</td>
<td>16,312</td>
</tr>
</tbody>
</table>

How to generalize Dovetailing to any abstractions of any space
Multiple Lookups in One Pattern Database

Example

<table>
<thead>
<tr>
<th>state</th>
<th>goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 5</td>
<td>1 2</td>
</tr>
<tr>
<td>6 1 8</td>
<td>3 4 5</td>
</tr>
<tr>
<td>3 4 7</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

Domain = blank 1 2 3 4 5 6 7 8
Abstract = blank 1 0 0 0 0 0 0 0

distance

Standard PDB lookup

<table>
<thead>
<tr>
<th>abstract state</th>
<th>abstract goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Second lookup, same PDB

<table>
<thead>
<tr>
<th>abstract state</th>
<th>abstract goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Relevance?

Why is this lookup relevant to the original state?

Two Key Properties

1. Distances are Symmetric
2. Distances are tile-independent

Experimental Results

- 16-disk, 4-peg TOH, PDB of 14 disks
 - Normal: 72.61 secs
 - Only the second lookup: 3.31 secs
 - Both lookups: 1.61 secs

- 15-puzzle, additive PDB (8-7)
 - Normal: 0.034 secs
 - Only the second lookup: 0.076 secs
 - Both lookups: 0.022 secs

Additive Pattern Databases
Adding instead of Max’ing

• Under some circumstances it is possible to add the values from two PDBs instead of just max’ing them and still have an admissible heuristic.

• This is advantageous because
 \[h_1(s) + h_2(s) \geq \max(h_1(s), h_2(s)) \]

Manhattan Distance Heuristic

For a sliding-tile puzzle, Manhattan Distance looks at each tile individually, counts how many moves it is away from its goal position, and adds up these numbers.

\[
\begin{array}{c c c}
1 & & 3 \\
2 & 3 & 1 \\
\end{array}
\]

\[\text{MD}(s) = 2 + 1 + 2 = 5 \]

M.D. as Additive PDBs (1)

\[
\varphi_1(x) = \begin{cases}
 x & \text{if } x = 1 \\
 \text{blank} & \text{otherwise}
\end{cases}
\]

\[
\begin{array}{c c c}
1 & & 1 \\
\varphi_1(\text{goal}) & \varphi_1(s) \\
\end{array}
\]

\[\text{PDB}_1(\varphi_1(s)) = 2 \]

\[\text{MD}(s) = \text{PDB}_1(\varphi_1(s)) + \text{PDB}_2(\varphi_2(s)) + \text{PDB}_3(\varphi_3(s)) \]

In General...

Partition the tiles in groups, \(G_1, G_2, \ldots, G_k \)

\[
\varphi_i(x) = \begin{cases}
 x & \text{if } x \in G_i \\
 \text{blank} & \text{otherwise}
\end{cases}
\]
Korf & Felner’s Method

Partition the tiles in groups, G_1, G_2, \ldots, G_k.

$$\varphi_i(x) = \begin{cases}
 x & \text{if } x \in G_i \\
 \text{blank} & \text{if } x = \text{blank} \\
 \text{otherwise} &
\end{cases}$$

Moves of \square cost zero.

What’s the Difference?

- Moves of \square cost zero.
- The blank cannot reach the position without disturbing tile 1 or tile 2.

Hierarchical Search

On-demand distance calculation

- To build a PDB you must calculate all abstract distances-to-goal.
- Only a tiny fraction of them are needed to solve any individual problem.
- If you only intend to use the PDB to solve a few problems, calculate PDB entries only as you need them.
Calculate Distance by Searching at the Abstract Level

Replace this line:
\[h(s) = \text{PDB}[\phi(s)] \]
by
\[h(s) = \text{search}(\phi(s), \phi(\text{goal})) \]
(recursive) call to a search algorithm to compute abstract distance to goal for state s

Hierarchical Search

15-puzzle Results (1)

• Felner’s 7-7-1 additive PDB:
 – takes 80 minutes to build (4,800 secs)
 – Solves problems in 0.058 secs (on average)

• Felner’s 8-7 additive PDB
 – Takes 7 hours to build (25,200 secs)
 – Solves problems in 0.028 secs

15-puzzle Results (2)

Hierarchical IDA*, 1 Gigabyte limit
– Using the same abstraction for all problems, solving takes 242 secs (on average), or 207 secs if the cache is not cleared between problems
– Max’ing over Corner & Fringe abstractions, solving takes 150 secs (on average)
– Using a customized abstraction for each problem, solving takes 74 secs (on average)
Thesis topics abound!

General Dovetailing

A Partial-Order on Domain Abstractions

- Easy to enumerate all possible domain abstractions

 Domain = blank 1 2 3 4 5 6 7 8
 Abstract = blank 0 0 0 0 0 0 0 0

- and to define a partial-order on them, e.g.

 Domain = blank 1 2 3 4 5 6 7 8
 Abstract = blank 0 0 0 0 0 0 0 0

 is “more abstract” than the domain abstraction above.

Lattice of domain abstractions
The “LCA” of 2 Abstractions

LCA = least-abstract common abstraction

General Dovetailing

- Given PDB₁ and PDB₂ defined by ϕ₁ and ϕ₂
- Find a common abstraction ψ of ϕ₁ and ϕ₂
- Because it is a common abstraction there exist ϕ₁ and ϕ₂ such that ϕ₁ ϕ₁ = ϕ₂ ϕ₂ = ψ
- For every pattern, p, defined by ψ, set SELECT[p] = ϕ₁ or ϕ₂
- Keep every entry (pₖ, h) from PDB for which SELECT[ψ(pₖ)] = i.
- Given state s, lookup SELECT[ψ(s)](s)