
GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework

Abram Hindle, Alex Wilson, Kent Rasmussen, E. Jed Barlow,
Joshua Charles Campbell, Stephen Romansky

Department of Computing Science
University of Alberta
Edmonton, Canada

{

hindle1, aewilson, krasmuss, ejbarlow, joshua2, romansky
}

@ualberta.ca

ABSTRACT

Green Mining is a field of MSR that studies software en-
ergy consumption and relies on software performance data.
Unfortunately there is a severe lack of publicly available soft-
ware power use performance data. This means that green
mining researchers must generate this data themselves by
writing tests, building multiple revisions of a product, and
then running these tests multiple times (10+) for each soft-
ware revision while measuring power use. Then, they must
aggregate these measurements to estimate the energy con-
sumed by the tests for each software revision. This is time
consuming and is made more difficult by the constraints of
mobile devices and their OSes. In this paper we propose, im-
plement, and demonstrate Green Miner: the first dedicated
hardware mining software repositories testbed. The Green
Miner physically measures the energy consumption of mo-
bile devices (Android phones) and automates the testing of
applications, and the reporting of measurements back to de-
velopers and researchers. The Green Miner has already pro-
duced valuable results for commercial Android application
developers, and has been shown to replicate other power
studies’ results.

Categories and Subject Descriptors

D.4.8 [Performance]: Energy; D.2.5 [Testing]: Regression

General Terms

Performance

Keywords

Software Energy Consumption; Software Change; Android

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MSR ’14, May 31 - June 07 2014, Hyderabad, India
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2863-0/14/05. . . $15.00.
http://dx.doi.org/10.1145/2597073.2597097.

1. MOTIVATION
In Free/Libre Open Source Software there tends to be a

lack of historical records regarding testing results, testing
performance, dynamic analyses of test runs, and power use
performance profiles. Run-time data, such as the results
of unit tests, are often thrown away once they are seen by
developers who are interested. Crash reports are the most
common form of run-time data that is stored. Tools such as
Launchpad 1 enable the reporting and aggregation of crash
reports. While some exceptions such as Mozilla smoke tests 2

and CPAN 3 smoke tests exist, for the most part there are
not many performance oriented data sets available in the
software repositories that the field ofMining Software Repos-

itories (MSR) mines. Due to the lack of performance data
and due to the severe lack of power use/energy consump-
tion related data the task of green mining [11], studying
the relationship between software changes and software en-
ergy consumption, is difficult and time-consuming for both
researchers and developers.

Studying software power use, especially mobile software
power use is incredibly important because over 20% of the
US population owns and uses smart phones [20]. Thus users
rely on these mobile computers for not just games, but for
social and emergency connectivity. In the Android market-
place, battery saving apps such as Juice Defender [6] have
been downloaded over 10 million times, indicating that bat-
tery life is a concern for many smartphone users.

MSR research has typically focused on data that was al-
ready available and stored in software repositories. Green
mining must accommodate the fact that power use data is
missing from these repositories and thus must be generated.
To generate power use data one must typically 1) write a
test; 2) setup a test environment; 3) run an application; 4)
monitor its power use; and then, 5) record, report, and ag-
gregate the results with other test runs. There is noise and
some level of non-determinism in power instrumentation and
thus many measurements must be combined into a single es-
timate. These factors make testing for power performance
difficult. The need for running repeated tests means that
it is also time consuming; many of these observations have
been confirmed by Dong et al. [3].

1Launchpad https://launchpad.net/
2Mozilla Smoke Tests: https://moztrap.mozilla.org/
results/runs/
3CPAN Smoke Tests: http://www.cpantesters.org/
distro/S/Slurp.html

In this paper we propose the first dedicated hardware/-
software mining software repositories test harness. This is
a dedicated hardware testbed meant to enable the task of
green mining: the study of relationships between software
change and software power use. While others such as Shang
et al. [19], Dyer et al. [4], and Gousios et al. [7] have leveraged
cloud computing infrastructure such as Hadoop, mongodb,
mysql and even bittorrent to store, distribute, collect, and
execute large queries on MSR-relevant data, cloud comput-
ing is less than helpful to green mining. Virtualization and
power estimation tend to rely on counter based models [9,
1] to estimate supposed power use rather than measuring
actual power use. Thus green mining faces an interesting
limitation in that instrumentation of virtualized computing
is currently limited and difficult. Thus, one must resort to
physically instrumented computers to measure power use.
We propose a dedicated hardware test harness that uses

physical instrumentation of the power circuitry of the mea-
sured mobile devices (Android smartphones) to automate
the power use testing of software such as apps that run on
Android. This Green Miner framework 4 includes software
components that schedule and run large test jobs spanning
100 or more revisions and execute numerous tests. Further-
more smartphones are not the easiest devices to use and thus
automating their use is extremely helpful for testing. The
Green Miner framework can aggregate, analyze and graph
the results allowing researchers to poke and prod at the data
both directly and visually.
Because of the lack of virtualization support, the need to

run many 1000s of tests quickly, the lack of pre-existing data,
the data processing requirements, the need to obtain results
quickly, the need to change tests often, and the need for sta-
ble instrumentation, we built the Green Miner framework.
Our contributions include:
• The introduction of the first dedicated hardware MSR-

based test harness: Green Miner.
• A description of Green Miner, and instructions on how

to build Green Miner.
• Advice for anyone attempting Green Mining.
• Case studies showing how one can use Green Miner

for MSR experiments.
• An investigation of how the visual aspects of a UI af-

fect software power use.

2. PREVIOUS WORK
There is much previous work relevant to special configura-

tions for mining, mining for performance, measuring energy
consumption and web-visualization of MSR data.
Energy is the cost or the ability to do work, and is mea-

sured in watts while power is the rate at which energy is con-
verted or consumed, and is measured in joules. One joule
is exactly equal to one watt for one second. Executing a
task on a mobile device consumes energy, of which there is
a limited amount stored in the device’s battery. While the
task is being completed, the device draws power from the
battery which is the rate that the energy is being consumed.
Mean watts refer to the mean power draw required during a
task, while joules refer to the total energy consumed by the
end of the task. For example, mean watts determines how

4Green Miner is available here! http://greenminer.
softwareprocess.es/

Figure 1: The innards of a Green Miner hardware

client unit. Consisting of an Arduino, a breadboard

with an INA219 chip, a Raspberry Pi running the

Green Miner client, a USB hub, and a Galaxy Nexus

phone which is connected to a high-current 4.1V DC

Power Supply.

many minutes a user can listen to music on their mobile de-
vice before the battery is depleted, while joules determines
how much energy is consumed simply by starting their music
player application.

2.1 MSR Miners
In MSR there are many examples of researchers using

cloud computing, distributed computing, and cloud comput-
ing frameworks like Hadoop and pig [18] to answer MSR
relevant queries on large MSR data sets.

GHTorrent [7] is an excellent example of a MSR collection
rig that collects and stores data from the Github “Firehose.”
It uses dedicated computers to monitor, store, and distribute
Github data that is currently larger than 100GB. GHTorrent
is an example of using distributed or cloud computing to
collect and serve MSR data and requests.

BOA [4] is a query system that can aggregate, count and
query a wide range of already extracted repositories using
a distributed map-reduce query language invented for the
task of mining software repositories. It compiles down in to
map-reduce jobs using Hadoop and then executes these jobs
on many cloud computers using the Hadoop framework.

Sheng et al. [19] have used Hadoop within their own re-
search lab to answer large questions using the idle processing
power of lab computers. In particular they investigated log
message evolution within Hadoop itself.

2.2 Power Use
There is much work in terms of Android power use. Pow-

erTutor by Zhang et al. [21] is an Android software power
monitor that augments ACPI power readings with machine
learning to improve accuracy. ACPI readings can be prob-
lematic because ACPI relies on chipsets and circuitry which
have only the minimal instrumentation required by mobile
device end-users.

Powertop [13] is a popular power monitor that runs on
any GNU/Linux computer with ACPI. It reports the pro-
cesses and drivers that produce events and CPU wake-ups.
Based on this information it tries to estimate energy con-

Figure 2: Green Miner Web service: Easy to use

test results.

sumption. Powertop is used by industry, notably by Michael
Larabel [14] who executed studies, similar to green mining,
on various versions of Ubuntu.
Hao et al. [10] leveraged program analysis and heavily

instrumented Android devices to benchmark Java VM byte-
code. They then estimated method power use based on those
benchmarks. The device they employed was not an Android
phone but rather a dedicated Android testing device instru-
mented by the manufacturer. Green Miner differs because
it can potentially measure any mobile device that exposes
access to a DC power supply or battery.

2.3 MSR and Performance
Gupta’s [8] work on mining Windows Phone 7 energy con-

sumption traces centres on determining which modules are
causing power usage. They generated these traces through
hardware instrumentation while repeatedly running bench-
marks of calls. Their work differs from ours because multiple
Green Miner testers are used and they are controlled by a
software controller that queues and runs test cases.

Sheng et al. [19] were primarily studying performance
leveraging logs and the evolution of log messages. They had
to build and test many versions of the software, much like
our frameworks had to.

Hindle’s [12, 11] work on Green Mining combined MSR re-
search and power use performance research to study software
change and evolution relevant to power use performance.

2.4 MSR and Visualization
One of the most successful MSR fields is that of visualiza-

tion. It is widely adopted on the web and utilized in industry
by companies such as Github. 5 Many of these visualizations
end up embedded into web services that allow querying and
reporting.

Sakamoto et al. [17] describe a web framework for brows-
ing and visualizing MSR-relevant data. They provide views
of metrics and rely on Google charts.

D’Ambros et al. [5] describe moving some of their vi-
sualization framework to the web and difficulties involved.
They provide a large number of visualizations based on the
very powerful Churrasco and Small Project Observatory [15].
The Small Project Observatory allows for the visualization
of data from multiple software development projects and
thus is quite relevant since Green Miner is meant to com-
pare between versions and applications.

3. TEST HARNESS
With the goal of running a variety of automated power

usage tests on Android, a test harness was developed which
automatically executes Android application tests using their
user interface while measuring their power use. The test
harness comprises a single web server for storing data and
scheduling test runs, and four clients which run tests. Each
client system includes a Raspberry Pi for collecting, upload-
ing data, and starting tests; a Galaxy Nexus running An-
droid OS 4.2.2; an Arduino Uno; and an Adafruit INA219
current sensor for monitoring power usage. In place of a bat-
tery, each Galaxy Nexus is connected via the current sensor
to a lab bench DC power supply, set to supply 4.1V. This
setup removes one possible source of variation in the test
data – battery voltage and internal resistance. The Arduino
records the amperage, wattage, and voltage fifty times per
second during testing, with a resolution of approximately 0.1
milliamps, and 0.01 volts.

3.1 Equipment
The physical setup of one of the Green Miner clients is

depicted in Figure 1. The DC power supply is glowing in the
background and the Galaxy Nexus, Raspberry Pi, INA219,
USB Hub, and Arduino are all visible inside of the white
plastic container.

5For an example of Github’s visualizations see:
https://github.com/abramhindle/mostitch/graphs

Figure 3: The Green Miner Web service allows tests

to be scheduled easily.

A Raspberry Pi was used for collecting data, uploading
data, and executing tests on an Android device. The Rasp-
berry Pi was chosen because it is a low-power ARM com-
puter that can run GNU/Linux, and thus it could run ADB
(Android Debug Bridge) as well as the scripts necessary to
interact with our Green Miner web service. The Raspberry
Pi was somewhat problematic because it needed to be pro-
vided with a steady 5V USB power source. Plugable’s 7
Port High Speed USB 2.0 Hub with 3A Power Adapter was
powerful enough to handle the Raspberry Pi. This powered
the Raspberry Pi and attached Arduino without problems.
Transcend 8GB SD Cards were used for the Pi’s file system.
The Raspberry Pi’s I2C pins are not suitable for instrumen-
tation, so the Arduino is connected to the INA219 instead.
The Android device we chose was the Samsung Galaxy

Nexus running Android OS 4.2.2. Originally we instrumented
the battery itself, but it was found that batteries lead to un-
stable measurements due to large variations in voltage and
internal resistance, thus it was necessary to simulate a bat-
tery by using a high-current DC power supply. The bat-
teries were removed from the Galaxy Nexus and wires were
soldered directly to the battery contacts. When provided
4.1V from the power supply the phone’s software was not
aware that the battery had been removed. The power leads
are connected to the Adafruit INA219 IC to measure power
usage. The phone was connected via the USB hub to the
Raspberry Pi so that the Raspberry Pi could send applica-
tions and UI test scripts to it. However this connection can
be interrupted by a transistor controlled by the Arduino,
which itself is controlled by the Pi.

The original method for measuring current was to measure
the drop in voltage across a shunt resistor and amplify that
signal for an ADC on the Arduino to report, and then take
a parallel ADC reading for voltage. To measure wattage
one needs both amperage and voltage. Unfortunately this
led to a complicated tuning setup, so the INA219 current
sensor was used instead. The INA219 is an IC that mea-

sures voltage and current and reports the values over I2C
(a digital serial protocol used to communicate serial data
between ICs). The INA219 came with its own shunt and
was far more reliable and needed far less tuning. Other am-
plifiers that were used seemed to be temperature sensitive.
The INA219 chip reports current and voltage measurements
over I2C to the Arduino. This instrumentation is desirable
because it doesn’t depend on the instruments and software
in the phone. 1 INA219 was used per Android phone.

The Arduino was an Arduino Uno flashed with our cus-
tom software that fulfilled two tasks: switching on and off
the USB connection for the phone and reading the power
measurements via I2C from the INA219 chip. Both of these
functions are ultimately controlled and reported to to the
Raspberry Pi by a USB Serial connection. The Arduino
Uno is pictured in Figure 4 connecting to the INA219. Fig-
ure 5 depicts the Arduino’s circuit for enabling and disabling
the USB connection to the phone using a TIP127 transistor.
By default the smartphone is connected, but if the Arduino
signals the transistor will block the USB connection. This is
done in order to prevent the phone from using USB (charg-
ing) during tests. 1 Arduino was used per phone.

The power supply used was a Weber Displays YIHUA
305D Lab Grade 30V 5A Digital Precision DC Adjustable
Power Supply. Multiple phones can be powered with 1 power
supply (2-3). The voltage is stable. Even when the phone
uses more power than could have been provided over USB,
the voltage is consistent. The power supply’s output was
set to 4.1V, the upper end of the voltage that a nearly
charged battery produces. Some apps, when combined with
the phone’s cellular network radio, would cause the phones
to draw a high current briefly. This high current is easy for
a cellphone battery to handle but hard for a DC power sup-
ply to handle, and impossible to provide over USB. Thus, a
powerful power supply that could handle the peak current
of two phones was chosen. In our testing, smaller power sup-
plies could not handle powering the phones and the phones
would turn off. A capacitor of 1000µF was placed across the
power supply leads, acting as a low-pass filter and current
buffer for the power supplied to the phone.

Thus each client required a USB hub, a Raspberry Pi, an
Arduino Uno, an INA219, a suitable transistor, an Android
phone and a stable source of DC power at typical battery
voltages.

3.2 Power Measurement
Voltage and amperage measurement is the task of the

INA219 IC. It internally averages 32 readings to produce
50 readings per second. The resolution is 0.01V for voltage
and 0.1mA amperage measurements. The INA219 was also
set up to read voltages between 0 and 16V at an amperage
range of approximately 0 to 1.3A. The Arduino Uno uses
these 50 readings per second to calculate a wattage from
the root mean squared of the V and A signals, reporting
over USB serial 50 times a second to the Raspberry Pi 3 val-
ues: the current Wattage, mA, V and the Arduino’s unique
name. These results are recorded by the Raspberry Pi. The
Raspberry Pi then packages this stream of data into a test
report that includes other metadata such as the timing of
the test, the state of the phone before and after the test,
the totals, the measurements per task, which device was
used, which Arduino was used, the name of the test, the run
number, the application under test, the version of the appli-

Vcc

Gnd

Scl

Sda

Vin-

Vin+

Vin-

Vin+I
N
A
2
1
9

Arduino

+5v

GND

I2C Scl

I2C Sda

+ -

Phone

1000
µF

DC Power Supply

4.1V

Figure 4: INA219 Circuit for power measurement

from a Galaxy Nexus smartphone

Arduino
TIP127

U
S
B

 P
h
o
n
e

U
S
B

 C
o
m

p
u
te

r

Digital 4

GND

1k

Figure 5: Transistor Switch Circuit for connecting

and disconnecting the USB cable between the Rasp-

berry Pi and the smartphone.

cation, the configuration of the test script, etc. All of this
information plus the readings is then packaged and submit-
ted to the web service. Multiple measurement clients can
run simultaneously, thus allowing multiple parallel tests.

3.3 Test Definition
Tests are defined using the rudimentary Unix shell avail-

able on Android. These scripts are uploaded to the Android
device prior to a test being run, and started just before the
USB is disconnected. A number of command-line utilities
are used to launch apps, create input events, and wait. Some
of these command line utilities (such as ’am’ and ’pm’) are
shipped standard with Android. Some of the utilities were
custom-written in C for these experiments, including a high-
precision sleep routine and input event injector. Each test is
divided into a number of components, so that the different
phases of the test (e.g., starting the app, loading a webpage,

etc.) can be analyzed separately. These components are
visible by different colours in the easy-to-read power use re-
port on the web service as shown in Figure 2. In addition,
each test can perform actions on the Pi before and after the
Android script is run.

The test code is distributed to the Raspberry Pi devices
via Git. When a test is scheduled by the web service and
the Raspberry Pi client agrees to run the test, it is deployed
from its test repository onto the Android device.

Test requests are posted, processed and sub-jobs are given
out to available Raspberry Pis by the web service. The
clients distribute the appropriate version and test code to
the Android device under test. The Raspberry Pi test client
monitors, records, annotates and uploads the test results
back to the Green Miner web service.

3.4 Test Device Specialization
The benefit of using only one model of phone is that the

hardware and operating system are the same. We also in-
strumented a Samsung Galaxy S2, however, it has a differ-
ent screen resolution than the Galaxy Nexus phones. Tests
have to be specialized and made device specific by adjusting,
for example, touch locations on the screen. If tablets were
instrumented, one would need to address the different UI
layout and sizes in the test definitions.

4. GREEN MINERWEB SERVICE
The Green Miner web service enables the distribution and

collection of green mining tests and their results. The web
service is responsible for the aggregation, persistence, stor-
age, analysis of test data, as well as scheduling test runs. It
also plots test results and provides access to raw and aggre-
gate test data.

4.1 Individual Test Report
The web service’s main page lists recent tests and allows

one to click and read the report about an individual test run.
An example of such a report is depicted in Figure 2.

This report contains a trace of the power use over time,
partitioned by testing task. Each partition is summarized
by mean-watts and joules consumed as well as its task label.
A stacked plot shows proportionally each task’s energy con-
sumption relative to the whole test. The type of test, how
the test was powered and meta-data before and after the
test run is also listed. This meta-data includes the current
WiFi state at the beginning and end of the test, because if
a WiFi router crashes results may be invalid.

At the top of the report shown in Figure 2 details about
the software and the test run are provided. The exclamation
mark button at the side is clickable and will flag a test as bad.
If there was an error during testing and the result should
not be used (machinery crashed, errors, debugging) then the
flagging of a test will remove it from the test list and any
analysis. The test can be manually recovered if necessary.
The other button is a download button that enables anyone
browsing to download the actual meta-data of the test so
they may perform their own analysis.

4.1.1 Job Queue

One important task of the web service is help a researcher
or developer to define a batch of tests to be run and analyzed.
The Green Miner web service provides a user interface to
schedule such tests. Figure 3 depicts the UI for adding tests

to be scheduled and run by the test clients on the Android
devices. One first selects the product one wants to test. The
product will be associated with a set of tests that can be run.
These tests can be selected by clicking the checkboxes of the
tests. Then the number of repetitions can be set so that
tests can be run multiple times for each application version
to ensure safe estimates of power use. The next field allows
one to choose application versions to be tested.
For programs like Fennec, build jobs ran on other ma-

chines that then uploaded binaries of each Fennec version to
the web service. For instance, Figure 6 depicts 685 versions
of Firefox Fennec, queued up and tested by submitting one
of these test request forms.
Once a test batch is submitted, it is broken up into com-

ponent tests and distributed to running clients. Clients take
the tests and report back the results, removing the test from
the test queue. Test run order is randomized to reduce bi-
ases such as caching, temperature, and time of day.

4.2 Visualizations
Once a few tests have been run most developers and re-

searchers want to see results. One test result tells part of
a story but it does not show trends or evolution. Aggrega-
tion of many tests is the corner stone of green mining, thus
no Green Miner would be complete without aggregation, re-
porting and visualization.
The most basic visualizations produced are individual test

reports such as the Firefox test report in Figure 2. However,
the Green Miner web service provides many kinds of aggre-
gate visualizations, spanning more than one test. Both pre-
defined and custom aggregate visualizations are available.
Once a request for aggregate results is made, either by the
main menu as shown in Figure 2, or by submitting an aggre-
gate query, the user is shown the results of the aggregation as
they are being generated, as in Figure 12. Sometimes aggre-
gation is time consuming because thousands of time-series
are being analyzed. To produce Figure 7, over 8000 tests
were aggregated by the web service. For custom analysis,
the Green Miner web service supplies the underlying data
behind the aggregate plots in CSV format. In fact, these
CSV datasets are available by URL on the Green Miner
web service, enabling 3rd party web services to analyze and
visualize the data. This includes visualization frameworks
and web services such as d3.js 6 or Google charts [17] to
plot the raw data.
Figure 7 shows 685 box-plots, ordered by application ver-

sion, of the distribution of mean watts and joules consumed
for the web page reading test on Firefox Fennec. There are
large areas of little variation, but there are also extreme
changes. Sometimes these extreme changes are caused by
the application or the test case crashing. Plots like Figure
7 provide an immediate summary of results and allow de-
velopers and researchers to decide upon further analysis or
testing.
Figure 6 shows 2 views of 8600+ tests run on 685 ver-

sions of Firefox Fennec. These plots are ordered by test task
and then by version: each test task is shown as a range of
colourful box plots from orange to blue to pink, where or-
ange represents early versions of Fennec and pink represents
later versions of Fennec. The top plot shows the mean watts
used during that portion of the test. The bottom plot shows
the energy consumed during each task of the test. The data

6D3.js http://d3js.org

in the bottom plot is equivalent to the data in the top plot
times the time it took to complete a task. Note that the high
power (top plot) portions of the test obviously do not run
as long as the lower-power portions and thus they consume
less energy (bottom plot) than the longer-running portions.
An interesting observation that can be made from the Mean
Watts plot in Figure 6 is the obvious tail power state [16]
that occurs after application exit.

Other visualizations available not shown for space con-
cerns include:

• T-test similarity matrices, showing whether different
application versions are statistically significantly different or
not.

• Stacked box-plots of energy consumed by each task,
relative and absolute.

• Application similarity matrices, showing whether any
pair of applications are similar based on a pairwise t-test.

• Run count plots that show how many runs each appli-
cation version received in a certain batch.

• Per-device aggregate plots comparing test clients.

4.3 Multi-SystemMeasurement Normalization
Due to manufacture variations and error tolerances within

electrical components not all devices are created equal, even
if they are the same model. Thus to parallelize test results
and normalize the results 1 phone, client, testbed, and in-
strumentation, is chosen to act as the gold standard phone
to which all other data is normalized. This is done by cre-
ating linear regression models and using them to normalize
the mean watts, joules and mean amps readings of data from
other devices. The slope of these models, for mean watts,
tends to range from 0.94 to 0.99 (almost identical) and the
intercepts range from -0.04 W to to 0.02 W. The constant
offset given by the intercept is often the majority of the cor-
rection needed to normalize the measured results. The R

2

values are above 0.95 for our linear regression models.

5. PIXEL POWER CASE STUDY
To demonstrate the kind of experiments Green Miner is

useful for a full case study that studied Firefox’s UI evolution
was attempted.

One candidate for power optimization, as shown by Zhong
et al.[22] is the graphical user interface (GUI). One of the
goals of Green Mining is to estimate the power use of soft-
ware without compilation or testing; to meet this goal with
respect to user interface design, a firm correlation between
user interface change and energy consumption must first
be established. Although the power usage of organic LED
(OLED) displays has already been successfully modelled from
a software perspective [2], a question remains regarding how
small changes in the user interface of a real application can
affect energy consumption. In this paper we verify the re-
lationship between OLED display content and power con-
sumption, and use this result as the basis for a study of the
power consumption and evolution of the user interface in the
Firefox browser on Android.

5.1 Test Description
Our initial test was designed to measure the impact on

power consumption of both high contrast changes (white vs.
black backgrounds), and the evolving Firefox GUI. Firefox
was launched and navigated to two pages, one after the other.

Figure 6: 685 Versions of Firefox Fennec, each tested

more than 10 times with a webpage reading test,

both mean watts and joules, separated by test task.

This is output directly from Green Miner.

After waiting long enough to be reasonably certain that the
page would be finished loading, the phone remained idle on
the page for 120 seconds, while its power usage was moni-
tored. Each page displays the same text, one in black with a
white background, and the other with the colours inverted.

For our testing, we selected a number of Android binaries
from Mozilla’s official nightly builds of Firefox for Android.
The versions used were chosen such that they represented ev-
ery GUI change that might affect the test. For each change,
the first version to include the change was selected, along
with the most recent version that did not. This configuration

Figure 7: 685 Versions of Firefox Fennec, each tested

more than 10 times each with a webpage reading

test, showing joules consumed for the entire test.

This is output directly from Green Miner.

allows for paired t-testing, and was designed to eliminate the
majority of other software change effects. Because Firefox
has a relatively minimal user interface, serving mainly as a
frame to the webpages it displays, the interface evolution
among all of the tested versions can easily be summarized
and is shown in Figure 8.

Once these tests were completed, the question arose of
whether any potential power differences caused by changes
to the GUI were being dominated by changes to the software.
To answer this question, a similar test was created where
screenshots of each Firefox version displaying the black text
on a white background were opened in Android’s built-in
image viewer. By replacing Firefox with the image viewer,
this test removes any variation in energy consumption which
might be produced by Firefox changes unrelated to the GUI
design.

5.2 Methodology
The Green Miner test harness was utilized for this exper-

iment. Screen timeout on the Android devices is set to 30
minutes, and screen brightness is set to 120 out of 255. Each
Firefox version was repeatedly installed, ran, tested, and
uninstalled. Uninstalling helps avoid cache effects. Finally,
the data was uploaded to the Green Miner web service.

5.3 Results
Our original test allowed for two different statistical anal-

yses: testing for a difference in mean power consumption
between black text on white and white text on black, and
testing for a difference in mean power consumption between
versions. For the first result, mean difference in mean power
consumption in watts between displaying black text on a
white background and white text on a black background, a
paired student’s t-test produces a 99.999% confidence inter-
val of −0.2352W to −0.2352W: the white text on a black
background uses at least 0.2W less than black text on white.
This is an encouraging result which offers very strong sup-

Figure 8: Firefox Android Fennec GUI Evolution.

port for the link between the display contents and energy
consumption, and serves as a motivating example for the
exploration of GUI energy consumption. This result also
cross-validates with the results of Dong et. al.[2].
The second statistical analysis of this data attempts to

determine which changes to the Firefox GUI produce a sig-
nificant change in power consumption. By testing power
consumption of either black on white or white on black text
across each GUI change, we hope to determine which GUI
changes, if any, might cause a significant change. With
this data, however, no changes yield statistically significant
results. Some changes produce an apparent difference in
means under a student’s t-test, but with too much variance
within the data to produce acceptably low p-values.

When considering these results, in light of the white vs.
black text results, we were still unsatisfied with our ability
to answer the question of how these GUI changes were affect-
ing power consumption. This prompted us to create a new
test using the image gallery application to display screen-
shots of each Firefox version, thus isolating GUI changes
from software changes. However, when running this test on
multiple devices with a medium level of brightness, the re-
sults were still lacking in significance. With our final image
gallery test, we attempted to further reduce any possible
sources of variation beyond the display content. Only a sin-
gle device was used, and the screen brightness was set to the
device maximum so that display contents might be more of
a dominant factor.

●● ●●●

● ●

●

● ●●

●●

●

● ● ●●●

2012-12-14

2012-09-01
2012-12-13

2012-08-31
2012-07-11

2012-07-10
2012-06-02

2012-06-01

Black Text on White Screenshot Signi cant Changes

Mean Power Consumption (watts)
1.25 1.262012-06-01

2012-06-02
2012-07-10

2012-07-11
2012-08-31

2012-09-01
2012-12-13

2012-12-14

1.25

Figure 9: This graph combines box-plots for mean

watts in the gallery test, with the relevant Firefox

UI on the left. Only significant changes are shown.

With 35 runs per Firefox version, these final results show
four of the ten changes as being significantly different in a
two-sided student’s t-test with p-values below 0.05. More
interesting is that although the two changes we suspected
would have the largest impact (2012-06-01/02, 2012-07-10/11)
were indeed significant, the first of these produced an esti-
mate for the mean difference which depicts a decrease in
power consumption, as opposed to the increase we expected.
In addition, two other changes came back as significant (2012-
08-31/09-01, 2012-12-13/14) which constituted only minor
changes in GUI, which we did not expect to be significant.
All results are summarized in Figure 10, and Figure 9 con-
tains only the changes we found to be statistically significant.
Note that, because website rendering changed several times
across the UIs tested, comparisons between GUI revisions
which are not paired together may not be valid.

5.4 Conclusion: Pixel Power
With our initial familiarity of power use on OLED dis-

plays, the significant GUI changes were still surprising. This
result reinforces the need for automated analysis of UI changes
for energy efficiency because we have shown with the help of
Green Miner that some UI changes have a significant effect
on the power use of an application.

6. DISCUSSION

6.1 Industrial Success
The Green Miner framework lead to one initial industrial

success! During one experiment on the efficiency of different
applications executing the same task, one of the authors of
this paper, Kent Rasmussen, found that one of the popular
Reddit reader apps, had abnormally high power usage while
browsing Reddit, even compared to web browsers. Figure
11 shows the anomalous behaviour in white. While adding
a comment to a Reddit discussion, the power use was quite
high compared to reading the article, suggesting something
was amiss. Armed with data extracted by the Green Miner
framework, this possible performance issue was reported to
the developers who then investigated the cause. The devel-
opers were grateful and provided a patched version where the
regression had been solved (depicted as the black behaviour
in Figure 11). The developers said that old code that used

Figure 10: This graph displays box-plots for mean

watts in the gallery test, on a single device. Results

in each pair were t-tested for significant difference.

the GlobalLayoutListener was being called excessively lead-
ing to increased CPU usage, thus the regression was solved
by removing the redundant code. Thus the Green Miner
framework helped debug a regression in a popular commer-
cial mobile app simply by comparing the power use of similar
tasks!

6.2 Lessons Learned
Improve reliability with strong physical connections. Ini-

tially we tried to emulate a battery by building objects that
had the same dimensions as batteries so they could slip in-
side of an Android phone. This was problematic because
the connection between the fake battery and the phone was
sensitive to movement, vibration, heat and was prone to pop-
ping out. By soldering wires directly to the phone’s battery

Figure 11: Green Miner results showing the differ-

ence between two versions of a popular Reddit ap-

plication.

contacts we guaranteed a good physical connection. This
enabled us to power the phone without using USB, which is
too limited to successfully use a phone without a battery.

Batteries are not reliable. The goal was to simulate reg-
ular operating environments and in doing so the battery,
built-in circuitry, and ACPI interface were originally used.
Unfortunately, neither the batteries, nor the energy esti-
mation circuitry attached to them were sufficiently reliable
for Green Mining. For instance, recharging a battery does
not always return it to its former level of charge. Initially,
recharge scripts were used that would recharge batteries to
90% between tests, but over time the maximum charge of
the battery would dip lower and lower. Additionally, the
voltage did not remain constant within each test run. This
meant that the watts used dropped over time as the bat-
tery was producing less voltage, in turn causing undesirable
artifacts in the resulting data. Because of these problems,
relying on batteries led to results that were erratic and hard
to reproduce. The batteries were initially replaced with AC
to DC wall socket (also known as“wall wart”) power supplies,
but these supplies could not handle the high current spikes
that phones often require. Batteries can handle these spikes
reliably but many wall socket transformers cannot handle
such a fast change in load. Eventually the batteries were
replaced with a stable lab bench DC power supply that was
hardy enough to handle the load of multiple phones.

The voltage of a charged battery must be measured before
replacing it with a DC power supply. The batteries used
were rated for 3.7V but in fact, 3.7V was the low end of the
voltage expected by the phone. A supply of 4.1V worked
well and caused the phone to think that the fake battery
was of moderate health.

Raspberry Pis need to be properly powered. If Raspberry Pi
computers do not have a strong power supply they will crash
and reboot during certain tasks or in certain configurations.
An externally powered USB hub from Plugable solved this
problem for this instance of the testbed.

Ground differences matter. The difference between 2 grounds
can be measured with a multimeter. An early setup con-
sisted of multiple devices hooked into one computer, but
when the ground difference was measured it was over 0.5V.
This meant that the grounds were not at 0V but they were
0.5V away from each other. This was a concern to our setup
because it means that the 0V measured by an instrument
might not be accurate, it could be off by 0.5V in either di-
rection. Additionally the difference in voltage causes a cur-
rent between the two grounds which also disrupts the cur-
rent measured by an instrument. Thus wattage calculations
could be very far from the actual wattage being demanded
by the phone. The issue of a single machine with different
ground potentials was solved by by using a single computer
for each testbed and wiring the ground planes of every device
(phone, Arduino, hub, pi, power supply, and power meter)
in a testbed together.

There is error in everything and even the same model of

a device can behave differently. Every resistor and every IC
tend to be published with spec-sheets that describe their
error or tolerance to error. Error free manufacturing and
calibration is impossible, thus given 4 Galaxy Nexus phones
they will have slightly different components, or even if they
have the same components, manufacturing error margins dic-
tate they will act slightly differently. Resistors are commonly
manufactured with error margins of 5% or 1% and the ag-

Figure 12: Green Miner Aggregate Results provide

both plots of the aggregates as well as the raw data.

gregation of these components within something like an An-
droid device will mean that different devices will produce
slightly different power measurements even if they are all the
same model. This caused the need for power measurement
normalization. In our case we took 1 device as the ideal and
then made linear models for the other devices to emulate the
ideal device. The linear model will scale wattage appropri-
ately to deal with these possible unavoidable manufacturing
variations and variations in our testbeds.

7. CONCLUSIONS
In conclusion we presented the plans, design, and imple-

mentation of the first dedicated hardware embedded MSR
test harness: Green Miner. Furthermore we discussed prac-
tical experiences and problems that were encountered and
could be encountered by other interested developers and re-
searchers.
The Green Miner is a hardware / software framework

that physically measures power use, while also adding a
continuous-integration-like test queuing system to it, as well
as a data aggregation and an analysis suite to interpret the
extracted data. Because of its parallel and continuous prop-
erties we can run power tests very quickly and in less time
than before.
To aide parallel testing we came up with a simple linear

model technique to normalize measured data based on the
biases and errors inherent in the devices under test. Manu-
facturing is not perfect and we need to normalize the mea-
surements to address this issue and enable parallelism.
We demonstrated the effectiveness of the framework on

the problem of studying UI evolution, and found a few in-
stances where UI changes could have lead to a change in
energy consumption.

8. ACKNOWLEDGEMENTS
Abram Hindle is supported by an NSERCDiscovery Grant.

E.J. Barlow was supported by an NSERC USRA Grant.
Thanks to Taras Glek from Mozilla for commentary.

9. REFERENCES

[1] N. Amsel and B. Tomlinson. Green tracker: a tool for
estimating the energy consumption of software. In Proceedings,
CHI EA, pages 3337–3342, New York, NY, USA, 2010. ACM.

[2] M. Dong, Y.-S. K. Choi, and L. Zhong. Power modeling of
graphical user interfaces on oled displays. In Proceedings of
the 46th Annual Design Automation Conference, DAC ’09,
pages 652–657, New York, NY, USA, 2009. ACM.

[3] M. Dong and L. Zhong. Self-constructive, high-rate energy
modeling for battery-powered mobile systems. In Proc.
ACM/USENIX Int. Conf. Mobile Systems, Applications, and
Services (MobiSys), June 2011.

[4] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: a
language and infrastructure for analyzing ultra-large-scale
software repositories. In Proceedings of the 2013 International
Conference on Software Engineering, pages 422–431. IEEE
Press, 2013.

[5] M. D’Ambros and M. Lanza. Distributed and collaborative
software evolution analysis with churrasco. Science of
Computer Programming, 75(4):276–287, 2010.

[6] Google. Juice defender - android apps on google play, August
22 2013. https://play.google.com/store/apps/details?id=com.
latedroid.juicedefender&hl=en.

[7] G. Gousios and D. Spinellis. Ghtorrent: Github’s data from a
firehose. In Mining Software Repositories (MSR), 9th IEEE
Working Conference on, pages 12–21. IEEE, 2012.

[8] A. Gupta, T. Zimmermann, C. Bird, N. Naggapan, T. Bhat,
and S. Emran. Energy Consumption in Windows Phone.
Technical Report MSR-TR-2011-106, Microsoft Research, 2011.

[9] S. Gurumurthi, A. Sivasubramaniam, M. Irwin,
N. Vijaykrishnan, and M. Kandemir. Using complete machine
simulation for software power estimation: the SoftWatt
approach. In Proc. of 8th Int. Symp. High-Performance
Computer Architecture, Feb 2002.

[10] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating
Mobile Application Energy Consumption using Program
Analysis. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 92–101, Piscataway,
NJ, USA, 2013. IEEE Press.

[11] A. Hindle. Green mining: A methodology of relating software
change to power consumption. In Mining Software
Repositories (MSR), 2012 9th IEEE Working Conference on,
pages 78–87, 2012. http://greenmining.softwareprocess.es/.

[12] A. Hindle. Green mining: Investigating power consumption
across versions. In Proceedings, ICSE: NIER Track. IEEE
Computer Society, 2012. http://ur1.ca/84vh4.

[13] Intel. LessWatts.org - Saving Power on Intel systems with
Linux. http://www.lesswatts.org, 2011.

[14] M. Larabel. Ubuntu’s power consumption tested.
http://www.phoronix.com/scan.php?page=article&item=878, Oct
2007.

[15] M. Lungu, M. Lanza, T. Gı̂rba, and R. Robbes. The small
project observatory: Visualizing software ecosystems. Science
of Computer Programming, 75(4):264–275, 2010.

[16] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-Grained Power Modeling for Smartphones using System
Call Tracing. In Proceedings of the sixth conference on
Computer systems, EuroSys ’11, pages 153–168, New York,
NY, USA, 2011. ACM.

[17] Y. Sakamoto, S. Matsumoto, and M. Nakamura. Integrating
service oriented msr framework and google chart tools for
visualizing software evolution. In 4th Int. Workshop on
IWESEP, pages 35–39. IEEE, 2012.

[18] W. Shang, B. Adams, and A. E. Hassan. Using pig as a data
preparation language for large-scale mining software
repositories studies: An experience report. Journal of Systems
and Software, 85(10):2195–2204, 2012.

[19] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W.
Godfrey, M. N. Nasser, and P. Flora. An exploratory study of
the evolution of communicated information about the execution
of large software systems. In WCRE, pages 335–344, 2011.

[20] A. Smith. Smartphone ownership 2013. June 5 2013.
http://pewinternet.org/Reports/2013/
Smartphone-Ownership-2013/Findings.aspx.

[21] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M.
Mao, and L. Yang. Accurate online power estimation and
automatic battery behavior based power model generation for
smartphones. In Proceedings of CODES/ISSS’10, pages
105–114, New York, NY, USA, 2010. ACM.

[22] L. Zhong and N. K. Jha. Graphical user interface energy
characterization for handheld computers. In Proceedings of the
2003 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, CASES ’03, pages
232–242, New York, NY, USA, 2003. ACM.

