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Abstract

Cographs are graphs arising from various applications and the study of these has been

pivotal in the development of various algorithmic graph theory techniques and properties,

such as modular decomposition.

Perfectly orderable graphs do not typically arise from application modeling. Instead,

they are defined as those graphs with a desirable property making certain optimization

problems solvable on them in a simple and efficient manner.

(P5, P 5)-free graphs generalize cographs and have attracted much attention in recent

years. The class of (P5, P 5, C5)-free graphs is a self-complementary class of perfectly or-

derable graphs on which several optimization problems are solvable in linear time, yet the

recognition problem for this class has no known algorithm faster than Θ(n3)-time. When

applying modular decomposition, recognizing (P5, P 5, C5)-free graphs is sufficient to rec-

ognize (P5, P 5)-free graphs.

We investigate the structure of (P5, P 5)-free and (P5, P 5, C5)-free graphs. This thesis

reveals some properties, gives counterexamples, and develops some conjectures concerning

this structure.
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Chapter 1

Introduction to Graphs and
Graph Classes

1.1 Graphs

A graph can be thought of as a pictorial representation of objects and relations between

the objects, typically by denoting objects with dots (called vertices) and relations between

objects with lines (called edges) joining the dots.

To formally define a graph, the vertices are denoted by a set V (G) and the edges are

denoted by the set E(G) which is a set of pairs of elements from V (G). When the graph

in context is clear, V (G) and E(G) are often simplified to V and E. To specify a graph

with vertex set V and edge set E, we write G = (V, E). Graphs can model a wide variety

of problems and scenarios. For instance, the vertices could be communication centres and

the edges could represent communication channels, such as a network of computers or a

collection of cities connected by train tracks. Visual examples of graphs are available in Fig-

ure 2.3, and examples of objects and relations that are represented by graphs are discussed

in Section 1.3.1.

The terms we use are standard, and will be defined later in Section 1.1.1. Chapter 1

covers some fundamentals in graph theory algorithms and analysis, and also provides exam-

ples which motivate the general study of graph classes. Chapter 2 reviews some important

notions in algorithmic graph theory that are necessary to fully appreciate and understand

the approach taken in the study of (P5, P 5)-free graphs following. Chapter 3 provides

motivation for the study of (P5, P 5)-free graphs by showing that they are a relevant and

important graph class to study, particularly for the associated recognition problem. Chap-

ter 4 reviews three papers which characterize and recognize classes related to (P5, P 5)-free

graphs: (P5, P 5, bull)-free graphs, the semi-P4-sparse graphs, and (P5, P 5)-sparse graphs.

Chapter 6 presents new work on prime (P5, P 5)-free and (P5, P 5, C5)-free graphs by cate-

gorizing the vertices depending on how they exist in induced P4s in the graph. Chapter 7
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recaps and concludes our thesis.

We will quickly describe the goal of the thesis here, noting that the following will be

discussed in further detail in the chapters to come. The task of recognizing a graph class

involves deciding whether a graph belongs to the class in question. Modular decomposition,

discussed in Chapter 2, allows us the liberty of restricting our effort to recognizing those

graphs in the (P5, P 5)-free and (P5, P 5, C5)-free classes without modules. Split graphs

(discussed in Section 3.1.1) are an easily-recognizable subclass of these two classes, and so

we can remove these graphs from our consideration. A theorem of Hayward, Hougardy and

Reed [31] tells us that every vertex in a non-split prime graph is in an induced P4, and

so, in an attempt to characterize the structure of prime (P5, P 5)-free and (P5, P 5, C5)-free

graphs, we partition the vertex set into vertices that exist as the ends of P4s, the middle of

P4s, or both. Some simple properties follow, such as the end-only vertices are the simplicial

vertices in the graph and so necessarily form an independent set. Similarly, the mid-only

vertices are the co-simplicial vertices and so always form a clique. The remaining vertices

are classified into several different types depending on how they relate to the end-only and

mid-only vertices, and properties of each type are investigated. Even though many of these

properties seem to be local to a vertex and its neighbourhood, they lead to some theorems

and conjectures on the global structure of prime (P5, P 5)-free and (P5, P 5, C5)-free graphs.

1.1.1 Notation and Definitions

In this subsection we present many of the basic graph theoretic definitions we will use in

this thesis. A reader familiar with the field of algorithmic graph theory will be able to skip

this section without any loss of continuity.

For vertices u and v in the vertex set V of a graph G, we say that u and v are adjacent

is {u, v} is in the edge set E(G). We also say that vertex u sees vertex v if u is adjacent to

v, and u misses v otherwise. We say an edge {u, v} is adjacent to vertex u and to vertex

v. We write G = (V (G), E(G)) to describe the (undirected) graph G with vertex set V (G)

and edge set E(G). If the elements of E are ordered pairs (u, v) instead of sets {u, v}, then

G is a directed graph. Unless otherwise stated, any graph mentioned in this thesis will be

an undirected graph. When the context is clear, V and E will be used in place of V (G) and

E(G). The size of a graph is the cardinality of V .

The open neighbourhood of a vertex v, denoted N(v), is the set of all vertices adjacent

to v. The closed neighbourhood of a vertex v, denoted N [v], is N(v) ∪ {v}. The nonneigh-

bourhood of v is the set V − N [v]. We call elements of N(v) (respectively, V − N [v]) the

neighbours (respectively, nonneighbours) of v.

A subgraph H of a graph G is a graph (VH , EH) where VH is a subset of V and EH is a

subset of E. Given a subset S of vertices of a graph G = (V, E), the induced subgraph on S

2



b d a e

c

Figure 1.1: A cycle

is the graph (S, ES) where an edge {u, v} is in ES if and only if u and v are in S and {u, v}

is in E. We will use H ⊆ G to mean H is an induced subgraph of G.

Two graphs G1, G2 are isomorphic if there exists a bijection f : V (G1) 7→ V (G2) such

that {u, v} is in E(G1) if and only if {f(u), f(v)} is in E(G2). The complement G of a

graph G is the graph (V, E) where for every pair of distinct vertices u, v ∈ V we have

{u, v} ∈ E ⇔ {u, v} /∈ E.

A path is a sequence of distinct vertices v1, v2, . . . , vk such that {vi, vi+1} ∈ E(G) for

i = 1 . . . k − 1. Note that this definition uses an ordered sequence of the vertices in a path.

For instance, in Figure 1.1 b, c, e, a is a path while b, c, d is not. For a path v1, v2, . . . , vk, an

edge {vi, vj} for |i − j| 6= 1 is called a chord. A path is a chordless path (equivalently, an

induced path) if it has no chord. An induced path on k vertices is denoted Pk. A cycle is a

sequence of vertices v1, v2, . . . , vk such that {vi, vi+1} is an edge for i = 1 . . . k − 1 as well as

{vk, v1}. In Figure 1.1 a, d, b, c, e is a cycle while a, b, c, d, e is not. For a cycle v1, v2, . . . , vk,

any edge {vi, vj} for i − j 6≡ ±1(modulo k) is called a chord. A cycle is a chordless cycle

(equivalently, an induced cycle) if it has no chord. A hole is a chordless cycle on five or

more vertices. Chordless cycles on k vertices are denoted Ck, and the complement of a hole

is referred to as an antihole.

Given a path v1, . . . , vk we call the vertices v1 and vk the endpoints of the path. Any

vertex in the path which is not an endpoint is called a midpoint of the path. A graph G is

connected if for every pair of vertices v and w there exists a path in G with endpoints v and

w. A graph is disconnected if it is not connected. The (connected) components of G are the

subgraphs of G which are maximally connected (“maximal” here meaning with respect to

subgraph inclusion.) The wings of a Pk≥3 are the two edges adjacent to the endpoints.

A subset H of the vertices V of a graph is called a stable set (also known as an independent

set) if every pair of vertices in H are nonadjacent, and a clique (also known as a complete

graph) if every pair of vertices of H are adjacent. A (vertex ) colouring of a graph is a

function f : V → {1, 2, ..., k} such that {u, v} ∈ E ⇒ f(u) 6= f(v). The size of the colouring

is the value k. The clique number (or clique size) of a graph G, denoted ω(G), is the
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size of the largest induced subgraph of G that is a clique. Similarly, the stability number

(or independence number) of a graph G, denoted α(G), is the size of the largest induced

subgraph of G that is a stable set. For simplicity, we will say “a graph is a certain other

graph” in place of “a graph is isomorphic to a certain other graph.” The chromatic number

of a graph G, denoted χ(G), is the size of the smallest colouring of G.

For more details of the above concepts and for other graph theoretic definitions not

mentioned here, refer to [23] or [60].

1.2 Optimization and Complexity

The reader is assumed to have prior exposure to basic complexity theory including algorithm

time/space analysis, polynomial time algorithms and the theory of NP-Completeness, which

are concepts covered in a standard introductory undergraduate algorithms course. A suitable

introduction to these topics is covered in [10]. A deeper, more advanced treatment can be

found in [49].

The problems of finding a maximum independent set, maximum clique, and minimum

colouring of a graph are all NP-hard and so polynomial-time algorithms to solve these are

currently unknown and may not even exist. As a result, one is often interested in solving

these problems on a certain class of graphs, perhaps general enough for certain applications

but restricted enough so that these problems can be efficiently solved. One such class of

graphs is the set of perfect graphs, defined as those graphs G such that for every induced

subgraph H ⊆ G, we have χ(H) = ω(H). In 1977, Grötschel, Lovász and Schrijver [25],

found that the above-mentioned optimization problems can be solved in polynomial time

on perfect graphs. These algorithms are not considered efficient for use in applications.

They rely on Khachiyan’s ellipsoid method [42] from linear programming, an algorithm

that is rarely preferred over the simplex method and its variants despite the polynomial

runtime of the ellipsoid method [8]. Finding efficient optimization algorithms in both theory

and practice is one reason perfect graphs have been extensively studied, as well as many

subclasses of perfect graphs.

As is common in graph theory, for a graph G = (V, E), n refers to |V (G)| and m refers

to |E(G)|. Labeled graphs (graphs whose vertices are labeled from 1 to n) are commonly

represented either as an adjacency matrix or as an adjacency list.

The adjacency matrix M of a graph G is a matrix of dimension n × n whose rows and

columns are indexed by the vertices of the graph and entry M [i, j] = 1 if vertices with labels

i and j are adjacent in G, and M [i, j] = 0 otherwise. M is thus a symmetric {0,1}-matrix

with main diagonal all zeroes, and so even with the removal of redundant information, this

representation requires Θ(n2) space. Testing the adjacency of two vertices takes constant

time. In general, all algorithm runtimes mentioned are with respect to the RAM model of
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computation using a single processor machine. Algorithm runtimes will always be given as

a measure of the worst-case analysis, unless otherwise mentioned.

The adjacency list of a graph is a list of rows indexed by the vertex labels. The ith row

is a list of all vertices adjacent to vertex i. This representation of a graph requires Θ(m+n)

space. Testing the adjacency of two vertices by scanning these lists O(n) time.

Algorithms are, unless otherwise noted, described in a manner which is representation-

independent and the analysis of algorithms will assume constant-time adjacency testing.

This is a reasonable assumption, as creating a O(n2)-space representation of a graph with

constant-time adjacency testing from an adjacency list is a standard textbook problem [1].

1.3 Graph Classes

The study of graph classes and algorithmic graph theory has flourished over the past fifty

years, resulting in various books surveying the general field of graph classes (for example,

the survey by Brandstädt, Le and Spinrad [3], or the book by Golumbic [23]) as well as

books on specific graph classes (for example, tolerance graphs [24] or perfect graphs [50].)

In this section we show how some graph classes are introduced, both from applications and

from the natural generalization or restriction of other classes.

1.3.1 Classes from Application Modeling

Consider an individual trying to decide on what lectures to attend during a one-day confer-

ence. Every lecture at this conference spans a contiguous time interval and can be of any

length. Two lectures are said to conflict if their time frames overlap, and so this individual

can only attend non-conflicting lectures. We are interested in finding a largest set of non-

conflicting lectures. Thus, if we create a graph whose vertex set is the set of lectures on

that day and create an edge between two vertices if and only if the corresponding lectures

conflict, then the task is solved by finding a maximum independent set in the resulting

graph. If, instead, the individual wants to hire note-takers, and the fewest number of such

note-takers, so that every lecture can be recorded, then we are interested in the size of the

maximum clique of the graph as this will be the largest number of lectures that are occurring

at any one instant in time. An optimal colouring of the graph will provide the schedule each

note-taker should take, as each colour class will provide a conflict-free list of lectures.

As noted above, maximum independent set and clique are NP-hard optimization prob-

lems. However, since the graph created for this application was constructed from a specific

structure (time intervals on a single time line,) the resulting graph will have some exploitable

properties. For instance, if there exists any cycle of size four or more in this graph, then that

cycle must have a chord. We call graphs obtained (as described in the preceding paragraph)

from the intersection of intervals on a line interval graphs. The NP-hard problems of max-
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imum clique, maximum independent set, minimum colouring all become polynomial-time

solvable when the graph considered is an interval graph [26].

Now consider this individual allowing a few minutes to be spared at the beginning or

end of each lecture, since sometimes arriving several minutes late does not affect the overall

value of attending the lecture. In our problem formulation, we associate a tolerance with

each time interval. If we define two intervals to be in conflict if and only if their intersection

size is greater than at least one of the two tolerances, then the resulting graphs obtained

from this problem are called tolerance graphs. See [24] for more information on these graphs.

1.3.2 Classes from Generalizations or Specifications

Here we describe a class of graphs and derive from it other graph classes whose definitions

may have seemed artificial when removed from the context of the original graph class.

To solve a problem such as maximum clique on a graph G, it is clear that if the graph

is disconnected, with components C1 and C2, then we may treat each connected component

separately, find ω(C1) and ω(C2), and use the maximum of each as ω(G). This provides

a simple decomposition into smaller problems. We can take this further by noting that if

we are looking for a clique in a graph, then this is equivalent to finding an independent

set in the complement of the graph. We further decompose our problems by now taking

complements of each component and decomposing these into their connected components

while keeping in mind that any maximum independent set of a graph is formed by taking

the union of the maximum independent sets of its components.

Such a decomposition is natural to consider and is useful for a simple approach to solving

some potentially hard problems. A problem, of course, occurs when the complement of a

large graph is also connected and so no further decomposition is available. We henceforth

define a class of graphs for which this never happens: G is a complement reducible graph

(or simply a cograph) if it can be decomposed in the above way until every subproblem is

reduced to a single vertex.

The class of cographs is a widely-studied class that arise in applications. A simple

characterization of such graphs is through a forbidden induced subgraph characterization,

namely, a list of graphs that never appear as induced subgraphs. For instance, the interval

graphs never contain a chordless four-cycle, and so C4 is one forbidden induced subgraph

of interval graphs. For interval graphs in particular, there exists an infinite list of minimal

such forbidden induced subgraphs. On the other hand, this list is very short for cographs:

G is a cograph if and only if G is P4-free [55].

Since restricting P4s results in useful structural properties in the graphs, many cograph

generalizations have been considered. For instance, Hoàng [33] defined P4-sparse graphs

as those graphs with the property that every set of five vertices induces at most one P4.
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Jamison and Olariu [39] define P4-reducible graphs as those graphs such that every vertex is

contained in at most one P4. Many other similar graph classes have been defined to restrict

the P4s in some way, such as P4-extendible graphs [40], P4-lite graphs [41], and P4-laden

graphs [22]. Later, we will discuss semi P4-sparse graphs, introduced in [19]. All these

classes lead to useful decomposition schemes and generalize cographs (in the sense that if a

graph is a cograph then it also belongs to any of these classes.)

1.4 Recognition

Now that we are aware of many graph classes, a natural question should be asked: Given

a graph, is it a member of a particular graph class? This is called the recognition problem

for a graph class. For the above cases, cographs (and all the other P4-restricting classes

mentioned) can be recognized in linear time. It can be the case that a recognition problem

is NP-complete, as with the case of perfectly orderable graphs [47]. Interval graphs can be

recognized in linear time, while tolerance graph recognition is still unknown to be polytime

solvable.

The purpose of this thesis is to explore the recognition of (P5, P 5)-free graphs, which are

introduced and discussed in Chapter 3. To the best of the author’s knowledge, this is per-

formed in O(n3) time using the HHD-free graph recognition algorithm [36], or O(nm + m2)

time using the Meyniel graph recognition algorithm [52]. A deeper structural understand-

ing often helps improve an algorithm, and structural results on (P5, P 5)-free graphs are

presented in Chapter 6.
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Chapter 2

Graph Tools

2.1 Lexicographic Breadth-First Search

The standard breadth-first (BFS) search algorithm is well known and often taught in any

introductory algorithms course, so is omitted here. Refer to [10] for a description of BFS.

Here, we describe a variant of BFS called Lexicographic Breadth-First Search [53] (LexBFS).

LexBFS is an algorithm producing an ordering of the vertices v1, v2, . . . , vn of a graph which

is a BFS ordering but of a specific type. The algorithm begins as a normal BFS, starting

at an arbitrary start vertex which will become vertex v1, and all vertices are intialized with

an empty label. For every neighbour u of of v1, concatenate the label ‘1’ to the end of the

label of u. Vertex v1 is marked as having been seen or visited, and of the unvisited nodes,

we select a vertex of lexicographically strongest label (at this point, a vertex with label ‘1’

is the “strongest” label.) Visiting one of these vertices and calling it v2, we concatenate

the label ‘2’ to (the end of) all of the labels of v2’s neighbours. The earliest labels are

considered lexicographically strongest (i.e. ‘1’ is stronger than ‘2’) and any non-empty label

is considered stronger than an empty label. The possible labels of a vertex in our graph at

this point are ‘12’, ‘1’, ‘2’, ‘’, and these are presented in a lexicographically decreasing order.

LexBFS chooses the next vertex to visit as the vertex with the strongest lexicographical

label. This process is continued until all nodes are visited. The labelling scheme essentially

serves as a tie-breaking measure with respect to vertex choices in the standard BFS. In the

case that two or more vertices share the lexicographically strongest label, any vertex with

the strongest label may be chosen arbitrarily.

As one more example of a lexical comparison, label ‘125’ comes before label ‘13456’,

since ‘125’ is stronger in its second component. A search similar to BFS, called maximum

cardinality search (MCS), will favour the longer labels over the shorter labels regardless of

what the contents of the labels are. In the case that two or more vertices have the longest

labels, an arbitrary vertex of longest label may be chosen next. The term ”maximum

cardinality” refers to the choice of picking a vertex whose set of already-visited neighbours
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is of maximum cardinality. For some classes of graphs, it has been shown that an MCS is

equivalent to a LexBFS ordering [53].

MCS and LexBFS can be implemented to run in linear (O(m + n)) time. See [53] for

details.

2.2 Greedy Colouring

We defined earlier the concept of graph colouring and mentioned that computing an optimal

(minimum) colouring is NP-hard. Here, we present a simple algorithm to colour a graph in

a not-necessarily-optimal manner.

We will equate colours with the integers 1, 2, . . . , k, and use the term ‘smallest’ colour to

mean the colour with smallest corresponding integer. One obvious colouring method is to

colour vertex vi with colour i. This provides a trivial upper bound to the chromatic number

(χ(G) ≤ |V |,) and this upper bound is realized when the input graph is a clique. Note

that any valid colouring of the graph provides an upper bound on the chromatic number.

The greedy colouring algorithm, in its most general form, takes an arbitrary ordering of the

vertices of a graph and proceeds to visit the vertices in this order, colouring each vertex with

the lowest colour available (that is, the lowest colour not already assigned to a neighbour

of that vertex.) This process runs in O(m + n) time and provides a valid colouring size

less than or equal to |V |. Graphs exist with specific vertex orders for which the difference

between the greedily obtained colouring size and the chromatic number of the graph are

arbitrarily large [59].

2.2.1 Perfectly Orderable Graphs

It is interesting to note that for any graph there does exist some ordering of the vertices

such that the greedy colouring algorithm will provide an optimal colouring. This is easy to

see, since from any optimal colouring, if we first list out the vertices of colour 1 and then

the vertices of colour 2, and so on, a greedy colouring of this order will always produce a

colouring with χ(G) colours. Thus, for general graphs, finding such an order is sufficient to

find an optimal colouring, and so the problem of finding this vertex order is NP-hard.

In 1984, Vašek Chvátal [6] defined perfectly orderable graphs as those graphs for which

there exists a vertex ordering such that, for every vertex subset, if that ordering is observed

for that subset, then the greedy colouring method optimally colours the associated induced

subgraph. Such an ordering, if it exists, is called a perfect order. To illustrate the usefulness

of such a definition, imagine a colouring problem on a graph, say, a channel assignment

problem to a set of cell phone users. Given a perfect order, we can colour the entire graph

optimally. Now if any subset of cell phone users turn off their phones, the resulting users

(creating an induced subgraph of remaining vertices) can also be coloured greedily using the
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Figure 2.1: An obstruction

already-known perfect order, without having to recompute anything. Two worthy questions

are now asked: given a graph, is it perfectly orderable? Given a perfectly orderable graph,

how quickly can we find a perfect order?

As an example of a small graph and an ordering which is not perfect, consider a P4

(v1, v2, v3, v4) and an ordering v1, v4, v2, v3. Then the two endpoints v1 and V4 receive

colour 1 and then v2 must take colour 2 and v3 is assigned colour 3. A P4, however, is easily

coloured with two vertices. A simple way to capture this scenario is to orient every edge

from vi to vj if vj comes before vi in the ordering. Then in the above case, since the two

endpoints come earliest in the ordering, the wings of the P4 are oriented outward, while the

middle edge is oriented arbitrarily (see Figure 2.1.) When a P4 is oriented as in Figure 2.1,

we call it an obstruction.

For graphs with oriented edges, we call an directed cycle a sequence of vertices v1, . . . , vk

where {vi, vi+1} is an edge oriented from vi to vi+1 and {vk, v1} is an edge oriented from vk

to v1. If a directed graph has no directed cycle, we call it acyclic.

For an orientation of a graph to represent a perfect order, it must be acyclic (so that a

corresponding linear order exists) and it can not have such an obstruction.

Chvátal showed that these necessary conditions are also sufficient.

Theorem 2.2.1 [6] A graph is a perfectly orderable graph if and only if there exists an

acyclic obstruction-free edge orientation.

The above-mentioned questions were answered by Middendorf and Pfeiffer in 1986 [47]

when they proved that perfectly orderable graph recognition is NP-Complete. It follows

that finding a perfect order (even in a graph known to be perfectly orderable) is NP-hard,

since if we had an algorithm to find a perfect order we could apply it to any graph, construct

the associated acyclic orientation and check if it is valid simply by checking the wings of

every P4 to ensure all P4s are obstruction-free. The validity of the orientation would then

answer the question of whether the original graph is perfectly orderable.

Many subclasses of perfectly orderable graphs have been introduced. Brittle graphs [7]

are perfectly orderable and polynomially recognizable, but no forbidden induced subgraph

characterization is known for them. A subclass of brittle graphs which have are characteriz-

able by forbidden subgraph is the class of (house, hole, domino)-free graphs [34] (HHD-free

graphs). These two classes are described in subsection 3.2.4, as HHD-free graphs are an

important class in relation to the (P5, P 5, C5)-free graphs.
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2.2.2 Optimizing with a Perfect Order

Chvátal [6] showed that perfectly orderable graphs are perfect; that is, he showed that for

every induced subgraph of a perfectly orderable graph, the maximum clique size is equal to

the chromatic number. Since the definition of a perfect order provides an optimal colouring

in linear time when a perfect order is known, the fact that these graphs are perfect also

gives the maximum clique size as well.

To find a maximum clique in a perfectly orderable graph G, consider a perfect order <

on the vertices. Consider a vertex v of largest colour, and due to the colouring scheme, we

know it must have a neighbour in each colour class corresponding to colours smaller than

χ(G). We can initialize the clique with two vertices, v and one of its neighbours of the next

highest colour, call it w. Chvátal proved the following lemma:

Lemma 2.2.2 [6] Let G be a graph with a perfect order < and a clique C with every w in

C having a neighbour p(w) not in C. Let P = {p(w), for every w ∈ C}. If P forms a stable

set, then some p(w) in P is adjacent to all of C.

Here, we have a C = {v, w}, and choose the neighbours p(v) and p(w) to be in the next

lowest colour class so that we know they have no edge between them. The proof of the

lemma is algorithmic, as so provides us with the desired p(w) vertex adjacent to all of C.

The clique is extended to include this vertex, and the process is repeated.

The problem of finding a maximum independent set in a perfectly orderable graph can be

solved in polynomial time by virtue of the fact that perfectly orderable graphs are perfect.

However, as we discussed earlier, the algorithms on perfect graphs are not very practical.

The problem of finding a maximum independent set of a perfectly orderable graph with a

polynomial-time combinatorial algorithm is still open, with or without a given perfect order.

In fact, it is still unknown as to how one could produce an optimal colouring and maximum

clique in a perfectly orderable graph with a purely combinatorial method in polynomial time

when a perfect order is not provided.

2.3 Modular Decomposition

A common problem-solving technique is to break a large problem into smaller subproblems,

usually in hopes of making the subproblems simple enough to solve and whose solutions can

be somehow combined to solve the original, large problem. This section discusses a method

for decomposing graphs using a method called modular decomposition. When modular

decomposition is applied to cographs, it is exactly the same as cograph decomposition

already discussed (in Subsection 1.3.2,) and so it can be considered a kind of generalization

of the cograph decomposition.
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fork co-fork

Figure 2.2: The fork and its complement

When a graph is no longer decomposable with respect to successive graph complementa-

tions or modular decomposition, it is called prime. The prime cographs are single vertices.

Later, we will see how the modular decomposition has been used to recognize (P5, P 5, bull)-

free graphs, whose prime graphs are simply bipartite or complements of bipartite graphs.

The prime semi-P4-sparse are either bipartite graphs, complements of bipartite graphs, or

a special kind of split graph.

2.3.1 Homogeneous Sets

Cographs were introduced in Subsection 1.3.2. Recall that cographs are those graphs to-

tally decomposable (to single vertices) by successively taking complements of connected

components. A co-connected component (or co-component) is a set of vertices which form a

connected component in the complement of the graph. Hence, the cograph decomposition

breaks the graph into its components and then each component into co-components, and so

on. Observe that a component C1 has the property that every vertex in V −C1 sees none of

C1, and similarly a co-component C2 has the property that every vertex in V −C2 sees every

vertex in C2. We say that with respect to a graph, a vertex subset S is indistinguishable

if every vertex outside the set either sees every vertex in S or misses every vertex in S.

Indistinguishable sets have also been called homogeneous sets or modules.

Definition 2.3.1 S ⊆ V is a module if 1 < |S| < |V |, and every v ∈ V − S either sees

every s ∈ S or misses every s ∈ S.

Definition 2.3.2 A graph is prime if it has four or more vertices and contains no module.

An example of a graph which is connected and co-connected (and so can not be decom-

posed in the way that cographs can be) while still having a module is the fork, whose graph

and complement are depicted in Figure 2.2. If a set M ⊆ V is a module of G, then that set

is also a module in G since the sets of vertices in V − M that miss all of M and see all of

M switch roles.

Note some basic properties of modules:
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D6 H6 P 5

H6 P5

Figure 2.3: Various graphs

Proposition 2.3.3 [3] Let G = (V, E) be a graph and let A, B be two modules of G. Then

the following properties hold:

(i) A ∩ B is a module

(ii) if B 6⊆ A, then A \ B is a module

(iii) if A ∩ B 6= ∅, then A ∪ B is a module.

These properties allow us to have a well-defined notion of maximal modules, since if two

modules intersect, either one is completely contained in another or the union of the two

modules form a larger module.

2.3.2 Prime Graphs

Recall that graphs with no modules are called prime. Any graph with more than one vertex

that has no P4 (and hence is a cograph) will have a module (a component or a co-component,)

and so any prime graph must have a P4. In fact, the only prime graph on four or fewer

vertices is the P4. The prime graphs on five vertices are the bull, P5, P 5, C5 (see figure 2.3).

It was earlier stated that modules are invariant under complementation, so a graph G is

prime if and only if G is prime. More prime graphs include the Pk>6, P k>6, Ck>6, Ck>6.

Even though a graph such as C4 is not prime itself, the definition of primality does not

restrict C4 from existing in a prime graph. The definition of primality simply implies that

the rest of the graph must adjoin to the C4 so that the modules in the C4 are not modules

in the entire graph. This suggests the existence of theorems of the sort if a graph is prime
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Figure 2.4: A prime (P5, P 5)-free graph with a C4 (filled) that is not in an H6.

and has a certain non-prime subgraph, then that non-prime subgraph must extend in some

way to some prime structure. One of the first theorems of this sort is given by Hoàng and

Reed:

Theorem 2.3.4 [35] If a prime graph has an induced C4 then the graph must have at least

one of a D6, H6 or a P 5 (Figure 2.3).

Graphs such as D6, H6 and P 5 are called minimal prime extensions of the graph C4, since

any prime graph containing a C4 must contain one of these. The minimal prime extensions

of small graphs (those one five or fewer vertices) have been completely characterized; some

graphs have an infinite number of minimal prime extensions [2].

It should be noted here that the term “prime extension” may be misleading. Let S be

set of four vertices inducing a C4 in a prime graph G. Theorem 2.3.4 tells us that G must

contain six vertices which induce one of D6 or H6 or else has five vertices inducing P 5. Let

T be a set of five or six vertices in G inducing one of the minimal prime extension of S. The

reason “extension” may be misleading is because it is not necessarily the case that S is a

subset of T . Figure 2.4 shows such an example.)

In a graph G with a module M , we can shrink M to a single vertex vM such that vM

sees the vertices in G that were universal on the module M and sees no other vertices. This

leaves behind the graph induced by the vertex set V \ (M \ vM ), where vM can be taken as

any vertex in M . When each maximal modules of G has been replaced by a single vertex,

we call the resulting graph G∗ the characteristic graph of G. Note that G∗ is prime and is

an induced subgraph of G.

2.3.3 Modular Decomposition and Partial Closure

When a module M of a graph G has been replaced with a single vertex, the graph G is said

to have been decomposed into the following two graphs: the graph induced by V \ (M \ vM )
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and the graph induced by M , and these two graphs can be decomposed further. This

procedure of successively decomposing a graph is the modular decomposition. The linear

time recognition algorithm for decomposing cographs by Corneil, Perl and Stewart [11] led

to the development of a linear time algorithm for constructing the modular decomposition

tree (by McConnell and Spinrad [44] and by Cournier and Habib [12].)

The general linear time decomposition algorithm is difficult and not discussed here.

A simpler linear time algorithm for modular decomposition exists for various classes, for

example, chordal graphs [37].

For computer-aided searches during the research for this thesis, a modular decomposition

was not used. We found all prime graphs on ten or fewer vertices using a simple recognition

algorithm. For a set of vertices S in G, if v is a vertex in V (G) − S we call v partial on

S if v sees a vertex in S and misses a vertex in S. Following [31], for any vertex subset S

of V with |S| > 1, define PTL(S) to be the set of vertices in S together with any vertices

in V − S which are partial on the set S. As is usual with functional notation, we let

PTL1(S) = PTL(S) and PTLi(S) = PTL(PTLi−1(S)), for i > 1. Since |PTL(S)| ≥ |S|,

we are guaranteed to have some kS for which PTLkS(S) = PTLkS−1(S). Define the partial

closure of S, PTL∗(S), as the set of vertices obtained after iterating the PTL(S) function

kS times. In particular, notice that if S is homogeneous in G, then PTL(S) = S.

A simple (while not necessarily efficient) algorithm to determine whether a graph is

prime relies on the fact that if there exists a module M in a given graph, and if S is some

set of vertices with S ⊆ M and |S| > 1, then PTL∗(S) = M2 where M2 is some module

such that M2 ⊆ M with possibly M2 = M . It follows that the partial closure just needs

to be tested for all S with |S| = 2, and if any such partial closure is a strict subset of the

whole graph then we have found a module, otherwise the graph is prime.

2.4 Relevant Properties of Prime Graphs

There are some important properties of prime graphs to note. For any pair of vertices {x, y}

in a proper vertex subset S of V in a prime graph, there must be some vertex d1 that sees

x and not y, or sees y and not x. However, since the three vertices {d1, x, y} also cannot

form a module, there must be another vertex d2 partial on this set, and by continuing this

process we do not explicitly know which di vertices are inside or outside the set S (even

though we know S is not a module and there must exist a vertex outside S which is partial

on it, possibly seeing multiple vertices and missing multiple vertices of S.) For specific local

information, the following lemma is indispensable. Call a set big if it has size at least two.

Lemma 2.4.1 [19] Let G be a prime graph and S a strict subset of V (G) with |S| > 1. Let

the big connected components of S be Q1, Q2, . . . , Qk, (respectively, co-connected components
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R1, R2, . . . , Rl.) Then for any 1 ≤ i ≤ k (1 ≤ j ≤ k) there exists some vertex in V (G) \ S

which is partial on some edge in Qi (non-edge in Rj).

Recall that a vertex in a graph is called simplicial if its neighbourhood induces a clique.

Call a vertex co-simplicial if the vertex is simplicial in the graph’s complement. That is, a

vertex is co-simplicial if its non-neighbours induce a stable set.

Lemma 2.4.2 The set of simplicial vertices in a prime graph induces a stable set.

Proof. Let v and w be two simplicial vertices in a prime graph. There must exist some

d distinguishing {v, w}, so say d sees v and misses w. If v sees w then v sees both d and

w, but d was chosen to miss w which is contrary to v being simplicial. Thus v must miss w. 2

Applying the above argument to the graph complement, we have:

Corollary 2.4.3 The set of co-simplicial vertices of a prime graph induces a clique.
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Chapter 3

Motivating (P5, P 5)-free Graphs

The purpose of this chapter is to reveal the connection between (P5, P 5)-free or (P5, P 5, C5)-

free graphs and other other well-known classes. Later, we will see theorem 4.1.1 of Fouquet

telling us that, with respect to prime graphs on six or more vertices, the (P5, P 5)-free and

(P5, P 5, C5)-free graphs are identical.

3.1 (P5, P 5)-free as a Generalization of Subclasses

A natural use of generalization is to take known results on certain graph classes and try to

extend those results to a larger class, thereby solving a larger problem. Here, we present

some important subclasses which are contained in the class of (P5, P 5, C5)-free graphs.

3.1.1 Split Graphs

A graph is bipartite if its vertices are partitionable into two stable sets; equivalently, a graph

is bipartite if it can be coloured with two colours. By changing the vertex partition property

from two stable sets to one stable set and one clique, we arrive at the split graphs.

Definition 3.1.1 A graph is split if its vertices can be partitioned into two sets S and C,

where S is empty or induces a stable set and C is empty or induces a clique.

Note that the complement of a split graph is a split graph, as the stable set S and clique

set C switch roles in the complement. In fact, the class of split graphs is set of graphs which

are both chordal and co-chordal.

Theorem 3.1.2 [16] A graph G is split if and only if G and G are chordal.

Through forbidden induced subgraphs, one may also characterize split graphs as (C4, C5, 2K2)-

free graphs [16] (where 2K2 is a graph on four vertices with two disjoint edges.)

There are many other characterizations of these graphs, including an intersection model

(involving the intersections of disjoint stars on a tree, mentioned in [45]) as well as vertex-
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ordering properties involving degree sequences [27], [58], which lead to a linear time recog-

nition algorithm (in fact, if the degree sequence is given, the algorithm runs in O(n)-time.)

Since recognizing split graphs can be performed in linear time, when testing whether

a graph is a (P5, P 5, C5)-free graph, we can afford to first test if the graph is split. If it

is, having no 2K2 ensures that there is no P5 and having no C4 tells us that there is no

P 5. The forbidden induced subgraph characterization for split graphs provides the fact that

split graphs are a (strict) subclass of (P5, P 5, C5)-free graphs. In the case that testing for

split-ness fails, we still gain from our attempt: there are linear time algorithms to recognize

split graphs such that if the input graph is not split, a C4, 2K2 or C5 is found [51]. When

testing a graph for containment in (P5, P 5, C5)-free graphs, knowing that it is not split

provides us with information on the location of one of these subgraphs.

Yet another benefit from first testing the split-ness of a (prime) graph is that if the graph

is not split, we can apply the following theorem:

Theorem 3.1.3 [31] If a prime graph is not split, then every vertex is in a P4.

This theorem appears in the context of P4-structure [31]. However, this formulation of

the theorem aides our study into the structure of prime (P5, P 5, C5)-free graphs.

3.1.2 Recursively Split Substitute Graphs

The operation of substitution is the opposite of contracting a module to a single vertex: we

replace a vertex v in a graph G with a graph H making every vertex in H adjacent to all

the vertices in G that were adjacent to v. In the resulting graph, the subgraph induced by

H is a module. For any class of graphs, we can ask whether the substitution of a graph of

that class into any vertex of a graph of that class maintains containment within that class.

For instance, in the case of split graphs, if we substitute a split graph into another split

graph, is the result necessarily a split graph? The answer here is ‘no’ as we can substitute

two nonadjacent vertices into the middle-vertex of a P3 and obtain a C4.

The class obtained from substituting split graphs into split graphs is called the recursively

split substitute graphs. The forbidden induced subgraphs for this class are the C5, P5, P 5, H6,

and the H6 (see Figure 2.3) [35] [32].

There is a theorem that characterizes a graph class obtained from substitution:

Theorem 3.1.4 [61] Let Z be a hereditary class of graphs with forbidden induced subgraphs

{F1, F2, F3, . . .} (possibly infinite list) then the class obtained from substituting a Z-graph

into a vertex in a Z-graph has forbidden induced subgraphs MPE(F1) ∪ MPE(F2) ∪ . . .,

where MPE(Fi) is the set of all minimal prime extensions of Fi [61].

As a corollary to that theorem, if all the Fi graphs are already prime, the class of graphs
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is closed under substitution. For instance, (P5, P 5)-free and (P5, P 5, C5)-free graphs are

closed under substitution.

The weak bipolarizable graphs [48] are defined as the chordal substitute graphs ; that is,

a graph is weak bipolarizable if it is obtained from substituting a chordal graph into any

chordal graph. The forbidden induced subgraphs of weak bipolarizable graphs are Ck≥5 and

all minimal prime extensions of C4, namely P 5, H6, and D6. Note that these graphs can be

characterized as those for which every prime induced subgraph is chordal.

The split substitute graphs can be easily recognized through the fact that a graph is split

substitute if and only if it and its complement are both weak bipolarizable. This follows from

the forbidden induced subgraph definition of weak bipolarizable graphs by Olariu in [48].

The paper also gives a linear time recognition algorithm for weak bipolarizable graphs. Since

(C5, P5, P 5, H6, H6)-free graphs can be recognized in o(n3) time, it is natural to wonder if

the (P5, P 5, C5)-free graphs can be as well.

3.1.3 Cographs

Much discussion has already been devoted to cographs (P4-free graphs) and their impor-

tance in the study of graph classes and graph algorithms. One might wonder if the simple

generalization from P4-free graphs to P5-free graphs would yield as fruitful a study as the

study of cographs has been. Surprisingly, very little is known about P5-free graphs. In fact,

the max independent set problem is of unknown complexity [21] on this class of graphs,

while it is easily polytime solvable on P4-free graphs (as already described) and it is known

to be NP-complete on P6-free graphs.

The cograph decomposition tree (through graph complements) and its use in solving

such problems as max independent set, max clique, min colouring and min clique cover

relies heavily on the fact that P4-free graphs are self-complementary. Since P5-free graphs

do not share this property, the self-complementary class of (P5, P 5)-free free graphs may

exhibit generalizations of properties of cographs.

3.2 (P5, P 5, C5)-free Graphs as a Special Case of Super-
classes

Rather than relaxing restrictions to arrive at more general graph classes, one may impose

further restrictions to gain more structure and properties in graphs. We will see here how

our (P5, P 5, C5)-free graphs serve as an important subclass of other well-studied classes.

3.2.1 Welsh-Powell Perfect Graphs

Early investigations into graph colouring led to the empirical analysis of heuristic methods

to colour graphs. One such heuristic was to sort the vertices of a graph by their degree
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(from largest to smallest) and then to apply a greedy colouring to this ordering [59]. The

intuition here being to colour the potentially most-constrained vertices first. The vertex

ordering based on degree is sometimes referred to as a Welsh-Powell ordering. In 1987,

Chvátal et. al. [9] defined and studied several subclasses of perfectly orderable graphs, one

of which they called Welsh-Powell perfect graphs :

Definition 3.2.1 [9] A graph G is Welsh-Powell perfect if every Welsh-Powell ordering is

a perfect ordering for that graph.

In [9], a forbidden induced subgraph characterization is given for Welsh-Powell perfect

graphs, which includes 17 forbidden subgraphs. One of these is the C5, and it was ob-

served that every other forbidden subgraph contained a P5 or its complement, and so the

(P5, P 5, C5)-free graphs are Welsh-Powell perfect. Hence, it is easy to find a perfect order-

ing for (P5, P 5, C5)-free graphs using the degree sequence, and moreover, these graphs are

self-complementary. Linear time algorithms were given in [9] to solve clique, colouring, inde-

pendent set and clique cover on Welsh-Powell perfect graphs, and thus on (P5, P 5, C5)-free

graphs.

These (P5, P 5, C5)-free graphs are not the largest self-complementary class of perfectly

orderable graphs. Clearly, the largest such class is the class of perfectly orderable graphs

intersected with the co-perfectly orderable graphs, but no alternate characterization for

this class is known to exist (particularly, no forbidden induced subgraph characterization

is known for this.) We will see in Subsection 3.2.4 the self-complementary class of brittle

graphs that do not include all perfectly orderable co-perfectly orderable graphs, but do

include the (P5, P 5, C5)-free graphs as a subclass.

3.2.2 Meyniel Graphs

Recall that a graph G is is perfect if for every induced subgraph H of G the clique size of H

is equal to the chromatic number of H . The long-standing Strong Perfect Graph Conjecture

(“SPGC” resolved in 2003, [5]) conjectured that a G is perfect if and only if G and G had

no induced odd cycles of size five or more. (Calling a graph G Berge if G contains no odd

holes of size five or more, nor complements of odd holes, we can re-state the SPGC to be:

G is perfect if and only if G is Berge.)

Note that the statement “no induced odd cycles” is equivalent to saying “every odd cycle

has a chord.” In the 1970’s, Meyniel proved a theorem weaker than the SPGC:

Theorem 3.2.2 [46] Let G be a graph where every odd cycle has at least two chords. Then

G is perfect.

Such graphs are now called Meyniel Graphs. Meyniel graphs have been studied for their

recognition problem extensively, and graph tools such as the amalgam (not described here,
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see [4]) have been developed as a result of investigations into Meyniel graphs. Recognition

algorithms for Meyniel graphs have often been useful in the recognition of other graph classes

such as i-triangulated graphs [52] and quasi-Meyniel graphs [15]. Meyniel graph recognition

has been improved to O(m2 + mn) by Roussel and Rusu [52].

The forbidden induced subgraphs for Meyniel graphs are odd holes and odd cycles with

exactly one chord. In particular, C5 and P 5 are two of the forbidden subgraphs. The

remainder of the forbidden graphs – the next smallest of which are the 7-cycle and the two

ways that a 7-cycle can have a single chord – contain a P5.

Theorem 3.2.3 A graph G is a P5-free Meyniel graph if and only if it is a (P5, P 5, C5)-free

graph.

Using the fact that Meyniel graphs are P 5-free, we see that co-Meyniel graphs are P5-

free, and since the C5 is self-complementary, the largest self-complementary class of Meyniel

graphs (the Meyniel co-Meyniel graphs) are exactly the (P5, P 5, C5)-free graphs [3].

Theorem 3.2.4 [3] A graph G is (P5, P 5, C5)-free if and only if G and G are Meyniel.

3.2.3 Weakly Chordal and Murky Graphs

Meyniel graphs were a natural special class of Berge graphs and were shown to be perfect.

Another natural special class of Berge graphs can be formed, not by forcing more chords in

the odd cycles, but instead by forbidding all large cycles rather than just the odd ones.

Definition 3.2.5 [28] A graph G is weakly chordal if neither G or G has a chordless cycle

of size five or more.

Recalling that chordal graphs are graphs with no induced cycles of size four or more,

and noting that the complements of odd holes of size six or larger must have an induced

subgraph isomorphic to a C4, it follows that weakly chordal graphs contain both chordal

graphs and complements of chordal graphs.

As chordal and co-chordal graphs are known to be perfect [23], the generalization to

weakly chordal graphs as a step closer to the SPGC as weakly chordal graphs are Berge

graphs. In 1985, Hayward showed the following:

Theorem 3.2.6 [28] Weakly chordal graphs are perfect.

Weakly chordal graphs have come to be known as a large class of graphs containing many

other well-studied classes such as brittle graphs (see Section 3.2.4,) HHD-free graphs (Sec-

tion 3.2.4,) HH-free graphs (Section 3.2.5,) domination graphs (Section 3.2.5,) (P5, P 5, C5)-
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free graphs, and many others not mentioned in this thesis. Recently, weakly chordal graphs

have found themselves used in the field of bioinformatics 1 [43].

In continuing the class-broadening towards Berge graphs from weakly chordal graphs,

Hayward introduced murky graphs.

Definition 3.2.7 [29] A graph is murky if it contains no C5, P6, or P 6.

Murky graphs were also shown to be perfect [29], but have received little attention since

then. Taking these definitions a step further would call for restricting the C5, C7, C7, P8

and P 8, which is a class which has not been studied to the best of the author’s knowledge.

In the same way that murky graphs are a subclass of Berge graphs by the use of a

finite number of forbidden subgraphs, the (P5, P 5, C5)-free graphs are a subclass of weakly

chordal graphs, as the P5 and the P 5 are the common subgraphs to the holes and antiholes

of size six and larger. Perhaps an improved recognition of (P5, P 5, C5)-free graphs could be

useful in recognizing weakly chordal graphs, which can be currently recognized in O(m2) [57]

or O(n4)-time [30].

3.2.4 Brittle and HHD-free Graphs

After introducing perfectly orderable graphs [6], Chvátal introduced a subclass of perfectly

orderable graphs called the brittle graphs [7].

Definition 3.2.8 A graph G is brittle if for every induced subgraph H of G either there

exists a vertex that is not the midpoint of any P4 in H or there exists a vertex that is not

the endpoint of any P4 in H.

Since mid-P4 vertices and end-P4 vertices swap roles under graph complementation,

brittle graphs are self-complementary. To see that brittle graphs are perfectly orderable,

note that for an ordering to be obstruction-free, it suffices to colour – for each P4 – the

two mid-vertices before colouring the two end-vertices. So, if a graph is brittle and there is

a vertex which is not the end of some P4, then we can safely put that vertex at the start

of a vertex ordering knowing that it will not lead to any obstruction. Similarly (as is seen

through complementation) if there is a vertex that is not the mid of some P4, then we can

put that vertex at the end of a vertex ordering. Once one such vertex is placed in a vertex

ordering, the remaining graph (without the already-placed vertex) can be considered, and

since it is an induced subgraph of the original graph, the definition of brittle graphs tells

1A special case of the bioinformatics problem “Single Nucleotide Polymorphism Haplotyping” was reduced
to finding a maximum independent set in a class of graphs, and the paper proved their class of graphs were
weakly chordal, which allowed for the use of the O(n3)-time algorithms for maximum independent set
on weakly chordal graphs. The authors overlooked the fact that they had, in fact, proven their graphs
were weakly chordal co-comparability graphs on which there exist linear-time algorithms for maximum
independent set. Weakly chordal co-comparability graphs have been studied in their own right, see [14].
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us that there is another vertex which can be properly placed into this ordering. Continuing

this process until all vertices have been placed yields an obstruction-free ordering. This

proves that brittle graphs are perfectly orderable.

The ordering described is more specific than a perfect order and does not necessarily

exist for all perfectly orderable graphs, so sometimes this ordering is referred to as a brittle

ordering [3].

Brittle graphs are difficult to study for their general structure. For instance, no complete

characterization through forbidden induced subgraphs is known. Clearly, an induced cycle

of size five or more is not brittle since every vertex is a mid-point and an end-point of a P4,

so brittle graphs are hole-free. In [34], Hoàng and Khouzam show that HHD-free graphs are

brittle graphs.

Theorem 3.2.9 [34] Graphs with no P 5, D6, and Ck≥5 are brittle.

These graphs have come to be known as house, hole, domino free graphs, or HHD-free

graphs. Using the forbidden subgraph characterization, HHD-free graphs can be recognized

in O(n6) time. It is not difficult to describe a faster, and perhaps just as simple, algorithm

to recognize these graphs [50]. For every edge {x, y} find Nxy, the common neighbourhood

of x and y, Nx, the neighbours of x and not y, and Ny, the neighbours of y and not x. Let

M = V (G) − Nx,y − Nx − Ny − {x, y}. To test whether the edge {x, y} is the bottom of a

house or the bottom of a domino, perform a path-searching algorithm (say, BFS) from the

set of vertices in Nx, through the set M , to the set of vertices in Ny. If a path is found from

some s in Nx to some t in Ny using only one vertex from M , then the vertices on the s to

t path, together with {x, y} form a house if s and t are adjacent or a C5 if they are not. If

two vertices from M are in the s to t path, then a domino is found if s sees t, or a C6 is s

and t are not adjacent. If more than two vertices from M are in the found s to t path, then

a large hole is found regardless of whether s sees t.

Building the sets Nxy, Nx, Ny, and M and performing path-searching can be imple-

mented to run in O(m + n)-time. This process may need to be repeated for every choice

of {x, y}, so this algorithm runs in O(m2 + mn), or O(m2) time, an improvement on the

brute-force O(n6)-time algorithm.

The recognition of HHD-free graphs has been improved to O(n3)-time by Hoàng and

Sritharan [36] using an algorithm that decides whether a given simplicial vertex is the top

of a house. In general, HHD-free graphs do not necessarily have simplicial vertices, but they

make use of the following theorem:

Theorem 3.2.10 [34] Every HHD-free graph has a simplicial vertex or a homogeneous set.

By restricting the consideration of HHD-free graphs to prime HHD-free graphs, Hoàng

and Sritharan are able to find simplicial vertices. Since the only way a simplicial vertex
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can be in a house, hole, or domino is if the vertex is a top of a house, this is the only

condition that need be checked. Verifying that a simplicial vertex is not the top of a house

allows for the removal of the vertex without affecting the graph’s containment in the class

of HHD-free graphs, thus reducing the recognition problem to than on a smaller graph on

which a modular decomposition can again be applied and the process of checking simplicial

vertices repeated.

The only benefit of considering the HHD-free graphs with no modules is to guarantee the

existence of a simplicial vertex. The authors of that algorithm comment that a significant

improvement will likely utilize new information about the structure of prime HHD-free

graphs. This was the first motivation for the author of this thesis to study the class of

(P5, P 5, C5)-free graphs, as these are the largest self-complementary class of HHD-free

graphs.

3.2.5 Domination and HH-free Graphs

Recall that a graph is chordal if and only if it has a perfect elimination ordering, namely,

an ordering of the vertices v1, v2, . . . , vn where vj is simplicial in the graph induced by

v1, . . . , vj−1 for every j. By generalising the notion of a simplicial vertex and maintaining

the elimination ordering property, a new class of graphs will be described. Firstly, we note

that if v is a simplicial vertex then each neighbour u of v sees all of N(v). This motivates

the definition of domination in graphs:

Definition 3.2.11 [13] Let u and v be vertices in a graph. Then u dominates v if N(v) ⊆

N(u) ∪ {u}. Furthermore, u strictly dominates v if N(v) is a strict subset of N(u).

For notational purposes, u dominates v can be represented by v < u. We say that u is

comparable to v if either u < v or v < u. Note that domination is self-complementary in

that if u < v in G, v < u in G. If there are vertices u, v such that u < v and v < u, then

{u, v} forms a nontrivial module. Thus, in a prime graph, comparable vertices will always

come from strict domination.

Akin to the idea of a perfect elimination ordering, a domination elimination ordering

(or d.e.o.) is an ordering v1, . . . , vn such that every vj is dominated by some vi with i < j.

This leads to the class of domination graphs :

Definition 3.2.12 [13] A graph is a domination graph if it has a domination elimination

ordering.

Again, analogous to the characterization of chordal graphs which states that a graph is

chordal if and only if every induced subgraph has a simplicial vertex, domination graphs can

be characterized as those graphs which have a pair of comparable vertices in every induced
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subgraph. The inherent properties of vertex domination provide the fact that domination

graphs are self-complementary. Domination graphs do not share all the convenient properties

of the chordal graphs; for instance, while chordal graphs can be recognized in linear time [53],

there are no known polynomial-time recognition algorithms for domination graphs, and it

is unknown whether this recognition problem is polytime or NP-complete.

In a C4 the nonadjacent vertices dominate each other, but in chordless cycles of size five or

more there are no comparable vertices. Hence domination graphs can not contain chordless

cycles of size five or more. Since domination graphs are self-complementary, it follows that

domination graphs are a subset of weakly chordal graphs. This subset relation was shown to

be strict when a weakly chordal graph with no comparable vertices on 24 vertices was found

by Hayward [28]. It is unknown if this graph is the smallest such example. Though it would

seem that domination graphs and weakly chordal graphs form similar classes considering

the size of the smallest known graph distinguishing them, Rusu and Spinrad [54] show this

is not the case when large graphs are considered. They constructed infinitely many weakly

chordal graphs which are minimal non-domination graphs.

Recall that it is NP-complete to recognize perfectly orderable graphs [47]. As a result,

HHD-free graphs were developed as they form class having the properties of perfectly order-

able graphs while being easier to recognize. Similarly, domination graphs are not yet easily

recognized, so the class of house, hole-free graphs (HH-free graphs) were introduced in [13]

and shown to be domination graphs. Furthermore, the authors showed that every MCS

ordering (that is, the breadth-first search ordering where ties between vertices are broken

by choosing a vertex adjacent to the largest numbers of vertices already visited) on any

HH-free graph is a d.e.o.

As HH-free graphs have been studied in their own right, this provides more motivation

to study the (P5, P 5, C5)-free graphs since they are exactly the class of graphs G for which

G and G are HH-free.

To summarize this chapter, (P5, P 5, C5)-free graphs are exactly the class Σ∩Σ, and also

P5-free Σ, where Σ is any of the well-studied classes of Meyniel graphs, HHD-free graphs

or HH-free graphs. (P5, P 5, C5)-free graphs also form a natural subclass of the Welsh-

Powell perfect graphs and a superclass of other well-known classes. In addition to all this,

(P5, P 5, C5)-free graphs are interesting in their own right, as they can be optimized in linear

time, though it takes significantly longer to recognize when a graph is in this class.
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Chapter 4

Previous Work on (P5, P 5)-free
Graphs

In this chapter we recite the results of three different papers on classes that are either

subclasses of – or closely related to – the class of (P5, P 5)-free graphs.

4.1 (P5, P 5,bull)-free Graphs

In a paper titled “A decomposition for a class of (P5, P 5)-free graphs”, J.L. Fouquet [17]

studies the class of (P5, P 5, bull)-free graphs. As the bull and P5 are prime, it is sufficient

to show how to recognize prime (P5, P 5, bull)-free graphs (that is, prime with respect to the

homogeneous set, or modular, decomposition.) Before attacking the problem, a relationship

between (P5, P 5)-free and (P5, P 5, C5)-free graphs was given:

Theorem 4.1.1 [17] For each (P5, P 5)-free graph G at least one of the following holds:

i) G has a homogeneous set

ii) G is isomorphic to C5

iii) G is C5-free

This theorem implies that prime (P5, P 5)-free graphs are exactly the prime (P5, P 5, C5)-

free graphs on six or more vertices. The task of characterizing the prime (P5, P 5, bull)-free

graphs was completed with a fairly elegant solution resulting in a simple structure of these

graphs.

Theorem 4.1.2 [17] Let G be a prime (P5, P 5, bull)-free graph on 6 or more vertices. Then

G is either bipartite or the complement of a bipartite graph.

It is not hard to see that every bipartite graph is bull-free and P 5-free, so the (P5, P 5, bull)-

free graphs which are bipartite are exactly the P5-free bipartite graphs. Recognizing prime
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Figure 4.1: The other forbidden induced subgraphs of P4-sparse graphs

(P5, P 5, bull)-free graphs thus reduces to recognizing P5-free bipartite graphs. Fouquet’s

analysis of the recognition algorithm lead to an O(n3) runtime, but this result predates the

linear time modular decomposition algorithms of [12] or [44], and so (P5, P 5, bull)-free can

now be recognized in linear time [18].

4.2 Semi-P4-Sparse Graphs

As cographs are an important class in the study of algorithmic graph theory, many gener-

alizations to this class have been studied which exhibit similar properties. P4-sparse graphs

were introduced in [33] as a natural generalization of cographs and for which a forbidden in-

duced subgraph characterization is easily obtainable. The class is algorithmically significant

because of its linear time recognition through another decomposition scheme, generalizing

the standard cograph decomposition.

Definition 4.2.1 [33] A graph G is P4-sparse if every set of five vertices in G induces at

most one P4.

Since a set inducing a P4 in G will also induce a P4 in G, this class is self-complementary.

In the C5, as an example, every set of four vertices induces a P4, so the C5 is a minimal

forbidden induced subgraph of P4-sparse graphs. Similarly, it is easily seen that the P5 and

P 5 are minimal forbidden graphs, and so P4-sparse graphs form a subset of (P5, P 5, C5)-

free graphs. The other forbidden induced subgraphs for P4-sparse graphs are shown in

Figure 4.1.

In 1997, Fouquet and Giakoumakis introduced a broader class called the semi-P4-sparse

graphs. This class generalizes the P4-sparse graphs through a relaxation of the forbidden

induced subgraphs. They continue restricting the P5 and P 5, and only additionally restrict

the kite graph (which is the complement of the fork. See Figure 4.1.) Through a modular
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decomposition, and using theorem 4.1.1, nontrivial semi-P4-sparse graphs are also C5-free.

The structural theorem is almost as simple as the (P5, P 5, bull)-free case; however, we

require the definition of another graph form.

Definition 4.2.2 [19] A thin spider is a graph whose vertex set can be decomposed into a

clique, K, and a stable set, S, such that |K| = |S| or |K| = |S| + 1, and the edges between

S and K form a matching, leaving at most one vertex of K unsaturated. If there is an

unsaturated vertex in K, it is called the head of the thin spider.

The following structural theorem for prime semi-P4-sparse graphs is simple, yet not

sufficient for recognizing the class of graphs.

Theorem 4.2.3 [19] Let G be a semi-P4-sparse graph. Then one of the following holds:

i) G has a homogeneous set

ii) G is bipartite

iii) G is bipartite

iv) G is a thin spider

v) G is a thin spider

In the (P5, P 5, bull)-free case, recognition was accomplished by the fact that the for-

bidden graphs were prime, and so the original graph before decomposing would be free of

those configurations if the graphs obtained from the modular decomposition were also free

of them. Since the kite is not a prime graph, the semi-P4-sparse graphs do not share the

convenience of only verifying the primality of the leaves in the modular decomposition tree.

The kite has two vertices forming a homogeneous set which could potentially vanish under

modular decomposition if the rest of the graph around them does not distinguish them.

Fouquet and Giakoumakis show that it is easy to detect if this has indeed happened using

a trick of marking certain vertices during the decomposition scheme. During the decompo-

sition, when a module is removed and replaced by a single vertex, if that module was not a

stable set then the vertex replacing that module will be marked. This implies that if, in a

resulting prime graph, there is a P4 having a middle vertex marked, then that middle vertex

must have replaced some edge, and with the rest of the P4 it would create a kite. Hence the

ends of P4 may be marked without any consequence of having kites in the original graph.

The authors fully characterize the allowable positions of marked vertices in the resulting

bipartite graph or thin spider, and show that those facts lead to a recognition algorithm in

linear time. Whether a module has an edge can be determined in linear time if certain data

structures are used [56].

28



A 4-pan (sometimes called the P graph) is the graph formed by substituting two non-

adjacent vertices for a middle vertex in a P4. The 4-pan can be thought of as a kite whose

two vertices forming a homogeneous set are non-adjacent, rather than adjacent. One might

investigate (P5, P 5, 4-pan)-free graphs and expect them to be recognized similarly to the

semi-P4-sparse graphs, only with the difference of marking vertices when they replace non-

stable modules, instead of non-clique modules. However, the structure of prime (P5, P 5,

4-pan)-free graphs is not as simple as the structure of prime semi-P4-sparse graphs and so

recognition does not reduce to simply recognizing P5-free bipartite graphs or spiders. The re-

sulting prime graphs have not yet been characterized, and recognition would further require

a complete characterization of the valid and invalid markings of such prime structures.

There is another characterization for the prime (P5, P 5, 4-pan)-free graphs:

Theorem 4.2.4 The set of prime (P5, P 5, 4-pan)-free graphs is equal to the set of prime

P5-free chordal graphs.

Proof. Clearly, a P5-free chordal graph is (P5, P 5, 4-pan)-free. To see that prime (P5,

P 5, 4-pan)-free graphs are also prime P5-free chordal graphs, recall that prime (P5, P 5)-free

graphs have the property of being C5-free, and if a prime graph contained a C4, it must

contain either a P 5 or a 4-pan. 2

There is no known characterization of P5-free chordal graphs which allows linear time

recognition, despite the many distinct characterizations of chordal graphs and their associ-

ated recognition algorithms.

4.3 (P5, P 5)-Sparse Graphs

Recently, Fouquet and Vanherpe [20] began the study of a class of graphs generalizing the

(P5, P 5)-free graphs in the same way that P4-sparse graphs generalize cographs.

Definition 4.3.1 [20] A graph is called (P5,P 5)-sparse if in every set of six vertices, the

number of induced P5s and induced P 5s is at most 1.

This study led to analogues of some theorems on (P5, P 5)-free graphs, such as the

restriction of the C5 in prime graphs.

Theorem 4.3.2 [20] Let G be a prime (P5, P 5)-sparse graph. Then G is either isomorphic

to a C5 or is C5-free.

After establishing this property, the authors fully characterize the prime (P5,P 5,bull)-

sparse graphs, leading to a linear-time recognition algorithm.
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Chapter 5

Four Other Self-Complementary
Classes of Perfectly Orderable
Graphs

Since the recognition of perfectly orderable graphs is NP-complete, subclasses of perfectly

orderable graphs for which recognition is polynomial time are desirable. Some subclasses

have already been mentioned, such as the brittle graphs (see section 3.2.4). Brittle graphs

have no known forbidden induced subgraph characterization, but they are known to contain

HHD-free graphs [34] (see section 3.2.4 for information on HHD-free graphs.) The intersec-

tion of HHD-free graphs and co-HHD-free graphs is the set of (P5, P 5, C5)-free graphs, as

mentioned earlier, and self-complementarity is an elegant and useful property to have in a

graph class.

We can define several natural classes of self-complementary perfectly orderable graphs:

Definition 5.0.3 Let < represent a total ordering on the vertices, and > represent the

reverse order of <. We can define the following four classes.

PO1: perfectly orderable ∩ co-perfectly orderable

PO2: graphs G which admit a perfect ordering < such that at least one of < or > is perfect

in G

PO3: graphs G which admit a perfect ordering < such that < is also perfect in G

PO4: graphs G which admit an ordering < such that both < and > are perfect in both G

and G

Note that PO4 ⊂ PO3 ⊂ PO2 ⊂ PO1. Since brittle graphs are self-complementary

and perfectly orderable, we have that brittle graphs are PO1. We can go further, noticing

that a brittle ordering in the complement graph is the reverse of a brittle ordering, and so

brittle graphs are PO2. It is not clear how brittle graphs relate to the other two classes.
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v1 v2 v3 v4

Figure 5.1: An orientation from a PO4 vertex ordering

We note that PO4 is not a subset of HHD-free graphs or (P5, P 5, C5)-free graphs since the

house is PO4. All these classes are subsets of weakly chordal perfectly orderable graphs,

since perfectly orderable graphs are Ck≥5-free. Later, we show a (P5, P 5, C5)-free graph

which is not PO4, so the (P5, P 5, C5)-free graphs and PO4 graphs form two sets which are

incomparable with respect to set containment.

When a graph has a total ordering on its vertices, there is an associated orientation of

its edges which orient edge {u, v} from u to v if and only if v comes before u in the ver-

tex order. Recall that perfectly orderable graphs are characterized as those graphs which

admit an ordering for which the associated edge-orientation is obstruction-free, where an

obstruction is a P4 (v1, v2, v3, v4) such that v1 < v2 and v4 < v3. Let us decompose this

orientation into the possible orderings that would bring about this obstruction. If a P4 is

labeled (v1, v2, v3, v4), then this P4 being obstruction-free is equivalent to saying that the

ordering on these four vertices cannot be any of

v1 < v2 < v4 < v3,

v1 < v4 < v2 < v3,

v1 < v4 < v3 < v2,

v4 < v1 < v2 < v3,

v4 < v1 < v3 < v2,

v4 < v3 < v1 < v2.

The edge-orientation groups these six cases into one equivalence class.

Unfortunately, the classes above are not as easily described with the edge-orientation.

As an example, if every P4 (v1, v2, v3, v4) in a graph is ordered v2 < v4 < v1 < v3 then

the graph would belong in class PO4. However, it would not be correct to say that every

P4 can be oriented as in figure 5.1, since an ordering v2 < v4 < v3 < v1 leads to the same

orientation but is not a valid P4 ordering for the class PO4. There is, however, a simple

way to characterize the PO4 graphs with a Chvátal-like characterization:

Theorem 5.0.4 A graph G is in PO4 if and only if G admits an ordering such that every

P4 (v1, v2, v3, v4) has its vertices visited in the order vi < vj < vk < vl where i+l = j+k = 5.

Proof. The theorem statement is simply a compact way of saying that every P4 (v1, v2, v3, v4)

must have its vertices visited in one of the four following ways:

31



a

b

c

d

e

f

Figure 5.2: The net graph

v1 < v2 < v3 < v4

v1 < v3 < v2 < v4

v4 < v2 < v3 < v1

v4 < v3 < v2 < v1

First, we show that if we have such an orientation on G, then G is in PO4. Observe that

in the complement graph, the two end-vertices switch roles with the two mid-vertices, so

the above property of an ordering is independent of graph complementation, and it is also

independent of order reversal. The six forbidden orderings which correspond to an edge-

oriented obstruction are given above, and so it is easily verified that an ordering with our

given property never creates an obstruction. Thus the ordering and its reverse are perfect

for G and G.

To prove that a PO4 graph must admit such an ordering we can exclude forbidden orders

from the 4! = 24 possible orders on four vertices. Removing the six orderings corresponding

to an obstruction, as well as all of their reverse orderings, leaves 12 possible permutations

left. Under complementation, a P4 a, b, c, d maps to b, d, a, c (or the reverse, but we need not

be concerned with that since our properties are reversal-independent). The 12 forbidden

orderings already removed from consideration will map to 12 more orderings under this mor-

phism, and it is a simple task to identify any new forbidden orderings. These 12 orderings

contain four more forbidden orderings, so removing those four as well as their respective

reverses leaves behind the four orderings given above, completing the proof. 2

Since paths Pk are all in the class PO4 and long holes are not, we have that Ck≥5 and

Ck≥5 are minimal non-PO4 graphs. Much in the same way that no minimal non perfectly
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Figure 5.3: Two minimal non-PO4 graphs with one-in-one-out orientations

orderable graph has a homogeneous set [50], the property exists for these graph classes as

they are defined in terms of perfect orders. The only other minimal non PO4 graphs on

six or fewer vertices are D6, D6, the net and its complement. The net graph is shown in

Figure 5.2. Before proving that the net graph is not PO4, we first mention another class of

perfectly orderable graphs sometimes referred to as one-in-one-out graphs:

Definition 5.0.5 [50] A graph is one-in-one-out if its edges can be oriented so that every

P4 has one wing oriented inward and the other wing oriented outward.

It is currently unknown whether one-in-one-out graphs can be recognized in polynomial

time [50]. We note that every PO4 ordering will have an associated orientation which is

one-in-one-out, but not every one-in-one-out orientation gives a PO4 ordering. For instance,

the P4 (v1, v2, v3, v4) could be ordered v1 < v3 < v4 < v2 but this is not a permissible

PO4 ordering. The important property of one-in-one-out graphs we will use here is that if

v1 < v2 then we must have v3 < v4. The one-in-one-out class was defined as a special case

of perfectly orderable graphs along with several other classes by creating special conditions

on the allowable orientations of P4s. Of those classes defined, the recognition complexity

has been classified as either polytime or NP-complete for all except for the one-in-one-out

graphs.

Proposition 5.0.6 The net graph is a minimal non-PO4 graph.

Proof. Consider the net as labeled in Figure 5.2, and assume there is some PO4 ordering

on it. Because of the symmetry of the graph, we can assume without any loss of generality

that a < b. By the property mentioned above, we must have c < d and e < f , but then we

have the P4 (d, c, e, f) which does not satisfy the conditions for a PO4 ordering. 2

Corollary 5.0.7 The net graph is a minimal forbidden graph for both PO4 graphs and

one-in-one-out graphs.
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The corollary follows since the removal of any one vertex leaves behind only a single

P4 which could be oriented in any way desirable. Since the net graph is split, and thus

(P5, P 5, C5)-free and HHD-free, we have that the PO4 class is not comparable to these

three mentioned classes. The P 5 is an example of a graph which is not split, HHD-free,

nor (P5, P 5, C5)-free while being in PO4. Graphs on four or fewer vertices are examples of

graphs belonging to all of the HHD-free, (P5, P 5, C5)-free , and PO4 graphs.

Two more graphs which are minimal non-PO4 graphs are shown in Figure 5.3, along

with edge orientations showing that these are one-in-one-out graphs, unlike the net graph.

The details showing these are minimal non PO4 graphs are omitted, but we outline the

reasoning which can lead to proof.

An exhaustive search can show that any valid PO4 orderings of a P5 is the reverse of,

or equivalent to, one of the three shown in figure 5.4. Here, “reverse” implies a reading

of the P5s from right to left, and “equivalent” means equivalent under the mapping i to

6 − i. For example, the reverse of case B) in Figure 5.4 is 4, 5, 2, 3, 1 while an equivalent

ordering would be 5, 3, 4, 1, 2. Using those three ways to visit the vertices of a P5, one can

add a vertex seeing the middle vertex of the P5 and find three (again, up to equivalence

and reversals) valid orderings of this graph. After adding the final vertex to make either of

the two graphs shown, it is seen that no suitable ordering exists to accommodate the final

vertex.

To the best of the author’s knowledge, the recognition status of the four classes PO1 -

PO4 is open.

Since LexBFS serves as a natural method to order vertices in graphs, and many types

of orderings that have been studied such as the perfect elimination ordering, semiperfect

elimination ordering, domination elimination ordering, perfect ordering mentioned in this

thesis so far, there is an associated class of graphs which admit such properties under any

LexBFS ordering. For example, we have the following theorems:

Theorem 5.0.8 [53] Every LexBFS ordering of G is a perfect elimination ordering if and

only if G is a chordal graph.

Theorem 5.0.9 [38] Every LexBFS ordering of G is a semiperfect elimination ordering if

and only if G is HHD-free.

Theorem 5.0.10 [13] Let G be a HH-free graph. Then every LexBFS ordering is a domi-

nation elimination ordering.

Since we have defined the PO4 ordering, we are inclined to state the following property:

Theorem 5.0.11 Every LexBFS ordering of a graph G is a PO4 ordering if and only if G

is a cograph.
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2

Figure 5.4: Three distinct PO4 orderings of a P5

Proof. If G is P4-free, then clearly it is PO4 since there are no P4s that can violate the

characterizing property. If G has a P4 a, b, c, d then there is a LexBFS ordering that takes

b < c < a < d which is not a valid PO4 ordering. 2

This BFS ordering on the P4 is also not a one-in-one-out ordering.

Corollary 5.0.12 Every LexBFS ordering of a graph G is a one-in-one-out ordering if and

only if G is a cograph.
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Chapter 6

Contributions: The Structure of
Prime (P5, P 5)-free Graphs

The fast recognition algorithms in Chapter 4 depend on a structural characterization of the

prime graphs of the considered graph class. Hence, the investigation of properties of prime

(P5, P 5)-free graphs is worthwhile if one would like to improve the recognition time of these

graphs through a modular decomposition.

6.1 Prime Non-Split (P5, P 5, C5)-free Graphs

Recall that a graph is split if and only if it is (C4, C5, 2K2)-free, where a 2K2 is the

complement of a C4. Since 2K2 and C4 are subgraphs of P5 and P 5, respectively, split graphs

are (P5, P 5, C5)-free so we are interested in properties of graphs that are (P5, P 5, C5)-free

but not split. A theorem related to P4-structure (a graph concept which is not discussed

here; the interested reader is referred to [31]) is of use to us here:

Theorem 6.1.1 [31] Let G be a prime graph. Then either every vertex of G is in a P4 or

G is split.

When considering prime non-split graphs, we are thus able to partition the vertex set

into the three disjoint sets based on how a vertex appears in P4s.

Definition 6.1.2 Let G = (V, E) be a prime non-split graph. Define V = VE ∪ VM ∪ VB

where

• v ∈ VE if v is an end of all P4s it is contained in,

• v ∈ VM if v is a midpoint of all P4s it is contained in,

• v ∈ VB if v is an end of some P4 and a midpoint of some P4,
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Note that the three defined sets are disjoint and their union contains all vertices, so they

serve as a proper partition of the vertex set.

We can immediately begin to state properties of some of these individual sets by using

a theorem of Hoàng and Khouzam. We state it here in terms of our notation:

Theorem 6.1.3 [34] Let x be a vertex in VE (respectively, VM ) of a prime graph G. Then

x is simplicial in G (simplicial in G.)

It is not hard to see that the converse is true. For instance, a simplicial vertex can never

be a midpoint of a P4 and so simplicial vertices must belong to VE . Using Lemma 2.4.2

and Corollary 2.4.3, we have that in a prime non-split graph, VE forms the set of simplicial

vertices and is a stable set, while VM is the set of co-simplicial vertices and is a clique. All

that can be said about VB at this point is that it contains those vertices which are not

simplicial nor co-simplicial. Note that under taking the complement of a graph, the sets VE

and VM switch roles while the vertices in VB remain in the same set.

Hoàng and Khouzam prove, in the same paper, a theorem regarding the existence of

simplicial vertices.

Theorem 6.1.4 [34] Let G be a prime HHD-free graph. Then G contains two nonadjacent

simplicial vertices.

Since (P5, P 5, C5)-free graphs are HHD-free graphs we can apply this theorem to prime

(P5, P 5, C5)-free graphs. Noting that the complement of a (P5, P 5, C5)-free graph is an

HHD-free thus allows us to assert the following:

Corollary 6.1.5 Let G be a prime non-split (P5, P 5, C5)-free graph. Then |VE | ≥ 2 and

|VM | ≥ 2.

This follows since we will not have a vertex which is both simplicial and co-simplicial in

a non-split graph. If a vertex was simplicial and co-simplicial, then its neighbourhood is a

clique and its non-neighbourhood is a stable set, which would imply the graph is split.

We can establish a similar property on the VB set by the use of minimal prime extensions.

Since we are considering non-split graphs, such a graph must have at least one of a C4, a 2K2

or a C5, so a non-split (P5, P 5, C5)-free graph must have one of a C4 or 2K2. Theorem 2.3.4

tells us that if a prime graph contains a C4 then it must contain at least one of an H6, D6

or P 5 but note that (P5, P 5, C5)-free graphs can not have a D6 nor a P 5. This means that

if there is a C4 in such a prime graph we must also have an H6, and if there is a 2K2 there

must exist an H6.

Corollary 6.1.6 Let G be a prime non-split (P5, P 5, C5)-free graph. Then G contains H6

or H6.
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The H6 and H6 each have two vertices which are both endpoints and midpoints of a P4

and so these two vertices will be in VB and thus |VB | ≥ 2.

6.2 Relationships Between Vertex Partition Sets

Here, we accumulate information on how the vertices in VE , VM , and VB relate to each

other. In particular, the nature of the VB set is of interest.

We will be reasoning about vertices around induced P4s often, so the following lemma

will be useful to shorten proofs.

Lemma 6.2.1 Let G be a (P5, P 5, C5)-free graph and the vertex subset {a, b, c, d} induces

a P4 in G. If some vertex v sees a and misses b then v must also see c and miss d.

Proof. First note that v must see at least one of the vertices in the P4 since otherwise

it forms a P5. If v sees d, this forms a P 5 (respectively, a C5) if it also sees (respectively,

does not see) vertex c. Since both P 5 and C5 are forbidden, v cannot see d, and so must

see only c. 2

6.2.1 Refinement of the VB-Vertex Set

When a vertex sees every vertex in a set S, we say that vertex is universal on S. If the

vertex sees none of the vertices in S, then we say it is null on S. If a vertex sees some of

S and misses some of S, then we say it is partial on S. Say that a vertex v in VB belongs

to the set Bij where i, j ∈ {0, 1, ∗} and i = 0, 1, or ∗ if v is, respectively, null, universal, or

partial on VE , and j is defined similarly depending on the adjacency with VM . Thus, these

are the possible sets a vertex in VB can belong to, and the associated description of each

set:

B11 = vertices of VB universal on VE and universal on VM

B1∗ = vertices of VB universal on VE and partial on VM

B10 = vertices of VB universal on VE and null on VM

B∗1 = vertices of VB partial on VE and universal on VM

B∗∗ = vertices of VB partial on VE and partial on VM

B∗0 = vertices of VB partial on VE and null on VM

B01 = vertices of VB null on VE and universal on VM

B0∗ = vertices of VB null on VE and partial on VM

B00 = vertices of VB null on VE and null on VM
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We claim that most of these sets are in fact empty and that VB can be partitioned into

exactly three of the above types.

To show this claim, we will only require the knowledge that vertices in VE (resp. VM )

are simplicial (resp. co-simplicial) for these properties.

Proposition 6.2.2 Assume some b ∈ VB in a prime non-split (P5, P 5)-free graph sees

some e ∈ VE . Then b is VM -universal.

Proof. Assume, on the contrary, that b misses some m ∈ VM . Since m is cosimplicial, it

cannot miss the {b, e} edge, so m must see e. But since e is simplicial, all of its neighbours

must be adjacent, and so b must see m. 2

In terms of refining the set VB , we have:

Corollary 6.2.3 Each of the sets B10, B1∗, B∗0, B∗∗ is empty.

The above property in the complement graph happens to be equivalent to the contra-

positive statement, but we state it as it is still worth noting:

Corollary 6.2.4 If some b ∈ VB misses a vertex in VM , then b is VE-null.

Next, we show that B00 is empty:

Proposition 6.2.5 No vertex b ∈ VB in a prime non-split (P5, P 5)-free graph is VE-null

and VM -null.

Proof. Assume the set B00 is nonempty, and let b1 be a vertex in B00 of smallest degree.

Since it is not simplicial it must see two nonadjacent vertices, say {u,v}. Since b1 sees

no vertices in VE ∪ VM , this non-edge must also be from the VB set. Every m ∈ VM is

cosimplicial and misses b1, so every m is universal on N(b1). The pair {u, v} must have

some vertex distinguishing them since our graph is prime, so say vertex b2 misses u and sees

v. Since b2 misses u, it is not from the VM set. Note that if b2 sees any m ∈ VM then we

would have a P 5, so b2 can not be a vertex from VE or from B0∗ ∪ B01 ∪ B11. So b2 is also

from the B00 set. If b1 is adjacent to b2, then there is a P 5.

Since b1 was chosen as a vertex from B00 with smallest degree, b2 must see some vertex

z that b1 does not. If z misses v, we have the P4 u, b1, v, b2 with z seeing b2 and missing v,

so by lemma 6.2.1 z must see b1. So if b1 misses some z ∈ N(b2) this z must see v. Every

m is universal on N(b2) so if z misses u then for any m in VM , {b1, u, v, z, m} induces a P 5.

We must then have that z sees both u and v. But now {b1, u, v, b2, z} induces a P 5, and

so it must be the case that b1 dominates b2, contradicting the fact that b1 was chosen with

minimal degree. 2
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The complementary property eliminates yet another subset of VB :

Corollary 6.2.6 The set B11 is empty.

Thus the set VB is reduced to only three types of vertices, corresponding to the sets

B01, B0∗, B∗1. The set of vertices in the first set remain in that set under graph comple-

mentation, while the vertices in the other two sets swap with each other.

6.2.2 P4-wing Orientations

Because our vertices are characterized by how they belong in P4s, it would be beneficial to

investigate how the P4s exist around the vertices. Recall that the two edges of a P4 are

called the wings of the P4. As a way of encoding information, for each P4 orient the wings

inward (from an endpoint to its adjacent midpoint.) This should not be confused with an

oriented graph or a digraph, as there may be some edges which are not oriented and some

edges that may be oriented in both directions. With respect to the vertex types introduced,

we see that any vertex in VE can only have incident edges oriented away from it, any vertex

in VM can only have incident edges oriented towards it, and any vertex in VB must have

at least one edge oriented away from it and at least one edge oriented towards it, with no

restriction on both these orientations possibly coming from the same edge. For brevity, we

will use the notation a → b to refer to the oriented edge from a to b, and a ↔ b for a

doubly-oriented edge. Having an edge a → b does not exclude the possibility that the same

edge may also be oriented from b to a.

This wing orientation will help us prove a key property regarding vertices in VE and VM .

Clearly, in any prime graph there must be a P4. In our case of non-split (P5, P 5, C5)-free

prime graphs we can say something stronger.

Theorem 6.2.7 Let G be a prime (P5, P 5, C5)-free non-split graph. Then there exists a

P4 in G whose endpoints are in VE and whose midpoints are in VM .

Note that this theorem is sharp in that it does not hold for the prime non-split graphs

C5, the P5 or the P 5 (the C5 itself would have all vertices in VB , the P5 has only one VM

vertex, and the P 5 has only one VE vertex.)

To prove Theorem 6.2.7, first notice that it would suffice to prove that the set of vertices

induced by VE ∪ VM is always connected. To see why this is sufficient, let S = VE ∪ VM ,

and notice that S is complement-independent. Proving that S is connected also proves that

S is co-connected, so S cannot induce a cograph and thus must contain a P4. To prove that

S is connected, recall that it is a split graph with VM forming a clique. Hence it would be

sufficient to prove that every vertex in VE sees some vertex in VM . To prove Theorem 6.2.7

we can then prove this stronger theorem instead:
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Theorem 6.2.8 In a prime non-split (P5, P 5, C5)-free graph, every vertex of VE sees some

vertex in VM .

Proof. Let e ∈ VE . Assume on the contrary that e sees no vertex in VM . Since the VE set

is stable, e must only see vertices in VB . Let the neighbourhood of e, N(e), be partitioned

into N1 and N2 where N1 are the vertices bi ∈ N(e) for which the edge {e, bi} is oriented

e → bi, and the set N2 is the set of vertices for which the edges joining e and any vertex in

N2 are not oriented.

Since e is simplicial, N(e) is a clique as is N1 in particular. Since N1 ⊂ VB , every vertex

in N1 must have an out-oriented edge. We now require some lemmas to proceed. In an H6,

let the edge joining the two vertices of degree two be called the bottom edge, or simply the

bottom, of the H6.

Lemma 6.2.9 If x ↔ y then {x, y} is the bottom of some H6.

Proof. Since x → y, there must be vertices a and b such that (x, y, a, b) (as an ordered

set) forms a P4, and since y → x we also have vertices c and d so that (y, x, c, d) is a P4.

Notice that either a, b, c and d are either all distinct or we have b coinciding with d. If,

indeed, b = d then the P4s (x, y, a, b) and (y, x, c, b) would form a C5 unless c sees a in which

case we have a P 5. Thus it must be the case that b and d are distinct.

Since (x, y, a, b) forms a P4 and vertex c sees x and not y, lemma 6.2.1 applies so c must

see a and miss b. Notice that if d sees a then we have a P 5 and if d sees b then we have a

P5. Hence edge {x, y} is the bottom of an H6. 2

This lemma is useful to us here since every vertex in N1 must have an out-edge and now

we can assert that there are no doubly-oriented edges in N1. If there is an edge {x, y} ∈ N1

which is doubly-oriented, lemma 6.2.9 tells us it is the bottom of an H6. Since e and

everything in N(e) see both x and y, the {x, y} edge must form the bottom of an H6 with

four vertices outside of N(e) ∪ {e}. Since {x, y} forms a C4 with two vertices outside of

N(e), and e sees both x and y, we have a house, which is not allowed.

We need a second lemma on this orientation to continue:

Lemma 6.2.10 Assume vertex a → b and b → c. If there is no {a, c} edge, then a ↔ b.

(See Figure 6.1)

Proof. Since b → c, there must be a P4 (b, c, x, y), and note that both x and y must be

distinct from a. Since a sees b and misses c, we apply 6.2.1 and so a sees x and misses y.

Since b must miss both x and y, we have the P4 (b, a, x, y) and so b → a. 2
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a b c

a b c

Figure 6.1: Orientations corresponding to Lemma 6.2.10

Since every vertex in N1 has an out-edge, we now know every such out-edge cannot end

at a vertex outside N(e), as the above lemma tells us that e is on a doubly-oriented edge

which is impossible for a vertex in VE . Hence every oriented edge from N1 leads to a vertex

in N(e). We will prove something stronger, that every oriented edge from N1 leads to a

vertex in N1. The following lemma asserts that if there was an edge oriented from N1 to a

vertex v in N2 then it must be that e → v, but this contradicts v ∈ N2.

Lemma 6.2.11 Let a → b and b → c. If there is an {a, c} edge, then either a ↔ b or

a → c.

Proof. Again, we have the vertices x and y so that (b, c, x, y), with x and y distinct from

a. We assume that {a, b} is not doubly oriented and prove that a → c. If a misses both x

and y then we are done, and if a sees y only, we have a P 5 so it must be the case that a

sees x. Now a must also see y since if it did not, the {a, b} edge would be doubly oriented

due to the P4 (b, a, x, y).

Since a → b, we need u and v such that (a, b, u, v) forms a P4. Now we have a seeing all

of {b, c, x, y} so we know that u and v must be distinct from x and y. To avoid a P5, u will

have to see some of {c, x, y}. Note that if u sees either x or y, then it must see both x and

y or else we have a P 5 or a C5. Since (a, b, u, v) is a P4 and y sees a, then Lemma 6.2.1 tells

us that y sees u and misses v. So u sees both x and y and now must also see c or else a P 5

is formed.

If we now prove v misses c, then the P4 (a, c, u, v) provides the a → c property sought

for. If it was the case that v sees c, v would have to also see y or else we would have the P 5

{a, c, u, v, y}. But now there is the forced P 5 on the vertices {a, b, u, v, y}, and so v cannot

see c and thus a → c. 2

Corollary 6.2.12 If a → b, b → c and c → a, then there must be either a ↔ b or a ↔ c.

When looking at the neighbourhood N1 ∪ N2 of a simplicial vertex, Lemma 6.2.11 tells

us that there will not be oriented edges from N1 to N2. Combining this with the previous
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lemmas tells us that all the oriented edges in N1 must terminate in N1 and so the oriented

vertices in N1 must have a directed cycle.

Corollary 6.2.12 follows from Lemma 6.2.11 just by adding the extra oriented edge c → a

in the hypothesis, and using Lemma 6.2.9 we can see that N1 can not have any oriented

triangles. Assume there are oriented cycles in N1 on more than three vertices, so a → b

and b → c without c pointing to a. Recall that N1 is a clique, and so there must be an

{a, c} edge. Lemma 6.2.11 tells us that either we have a doubly-oriented edge, which is not

allowed, or a → c. This shows that any oriented cycle on n vertices implies the existence of

an oriented cycle on n− 1 vertices, and in particular an oriented triangle which has already

been shown to not exist 1.

We have thus shown that N1 can not accommodate the arrows that must exist in the

case that N(e) ⊆ VB , and so any e ∈ VE must see some vertex of VM , as required. 2

Due to prior discussion, the proof of Theorem 6.2.8 also establishes Theorem 6.2.7, that

a non-split prime (P5, P 5, C5)-free graph has a P4 whose endpoints are in VE and whose

midpoints are in VM .

6.3 Structures Within Prime (P5, P 5)-free Graphs

Recall that any prime graph must contain a P4, and we just showed that a prime (P5, P 5)-

free graph must contain a P4 of a particular type - one whose vertices belong to the VM and

VE sets. Since we are considering non-split graphs, we know there is some H6 or H6 in our

graph as well. We believe that prime (P5, P 5)-free graphs contain a special type of H6 or

H6 as well:

Conjecture 6.3.1 Let G be a non-split prime (P5, P 5)-free graph. Then in G or G there

exists an H6 whose two vertices of degree one (the top vertices) are end-P4 only and whose

neighbouring vertices are mid-P4 only.

Much of the investigation into the VE , VM , and VB sets was motivated by this conjecture.

The lack of knowledge in characterising the VB set is an obstacle in the way of proving

Conjecture 6.3.1. For example, if we let |VE | = |VM | = 2 the conjecture still resists proof,

even with the knowledge that the four vertices in VE ∪VM must induce a P4. We hope that

this difficulty can add to the appreciation of the refinement properties of the VB .

One observation that can be made regarding VE-VM -type P4s extending to H6s and H6s

is that such a P4 is exclusive to one type. Namely,

1One can show that the P4-wing orientation is in fact acyclic in general, but the proof is longer and not
required for our needs here, as we only need that the N1 portion of the neighbourhood of a simplicial vertex
has no doubly-oriented edges.
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Figure 6.2: The arms of an H6 and the tunnel of an H6 (induced by solid vertices)

Theorem 6.3.2 Let G be a non-split prime (P5, P 5)-free graph and E1, M1, M2, E2 induce

a P4 with E1, E2 ∈ VE and M1, M2 ∈ VM . Then there can not be vertices u, v, x, y such that

{E1, M1, M2, E2, u, v} and {E1, M1, M2, E2, x, y} induce an H6 and H6 simultaneously.

Just as we showed that every vertex in VE sees some vertex in VM by proving a stronger

theorem, we shall show Theorem 6.3.2 similarly. First, we introduce some terminology.

There are several P4s in an H6 and so we want to give a name to a specific P4 to simplify

discussion.

Definition 6.3.3 The arms of an H6 is the unique P4 in the H6 whose endpoints are the

two vertices of degree one. The tunnel of an H6 is the complement of an arms. (See

Figure 6.2)

Now we prove a strengthening of Theorem 6.3.2.

Lemma 6.3.4 Let G be a prime non-split (P5, P 5, C5)-free graph, and let {a, b, c, d} induce

a P4 in G. Then {a, b, c, d} cannot simultaneously be the arms of an H6 and the tunnel of

an H6.

Proof. Assume some u and v exist such that they form an H6 with the four vertices in the

P4 with the edges {u, b} and {v, c}. Assume x, y extend the P4 to an H6, with x adjacent to

a, b, c and y adjacent to b, c, d. Note that x, y must be distinct from u, v since u and v must

each miss one of the mid-P4 vertices, while x and y do not. Then u, v, b, c, x induce a P 5,

unless x sees at least one of u or v. If x sees v, then we must have that y sees v as well or else

d, y, b, x, v will form a P5. But then a, x, v, y, b must induce a P 5, and so it cannot be the

case that x sees v. Similarly, y cannot see u and so x sees u and similarly, y sees v. But then

a, x, u, v, y is a P5, and this is unavoidable. Hence it is impossible that such u, v, x, y exist. 2
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Figure 6.3: A prime (P5, P 5)-free graph with a P4 in both an H6 and an H6

This proves the theorem as well, when combined with the observation that the only way

a P4 from VE ∪ VM can exist in an H6 or H6 is by being the arms of the H6 or the tunnel

of the H6.

Lemma 6.3.4 can not be strengthened by removing the arms or tunnel restriction on the

P4. Figure 6.3 shows a prime (P5, P 5)-free graph with a P4 extending to an H6 as well as

an H6.

6.4 Towards the H6-Conjecture

The H6-conjecture (Conjecture 6.3.1) was the primary focus during much of this research,

and from it sprung a host of properties regarding vertices in prime non-split (P5, P 5, C5)-

free graphs. This chapter presents the key results.

6.4.1 Adjacency Properties

One of the theorems already proven was that every vertex in VE sees some vertex in VM

(Theorem 6.2.8.) The complementary property gives another adjacency rule. Recall that

the vertices in VE are the simplicial vertices and the VM vertices are the cosimplicial vertices.

Corollary 6.4.1 In a prime non-split (P5, P 5, C5)-free graph, every vertex in VM misses

some vertex in VE .

Also recall that every vertex in VB falls into exactly one of the sets B∗1, B01 or B0∗.

This translates to: a vertex in VB is either partial on VE and universal on VM , null on VE

and universal on VM , or null on VE and partial on VM , respectively. Hence we have already

proven the following property:

Corollary 6.4.2 In a prime non-split (P5, P 5, C5)-free graph, every vertex in VB sees a

vertex in VM and misses a vertex in VE.
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More vertex-adjacency properties follow:

Proposition 6.4.3 In a prime non-split (P5, P 5, C5)-free graph, every vertex in VM sees

a vertex in VB .

Proof. Assume some m in VM is VB-null. This implies B∗1 and B01 are empty, and so

any b vertex must be of type B0∗. Let b be a vertex in VB . Since b is the mid-vertex of

some P4 it must be adjacent to a vertex, v, which is the end of that P4. Now v can not be

in VE since b is from B0∗, v can not be from VM since those vertices are never the end of a

P4, thus v must be another vertex from VB . But then {b, v} forms an edge that m misses,

contradicting the fact that it is cosimplicial. 2

Corollary 6.4.4 In a prime non-split (P5, P 5, C5)-free graph, every vertex in VE misses a

vertex in VB .

It was observed earlier that if a P4 from VE ∪VM was in an H6, then it must be the arms

of the H6. Further note that in order for this P4 to extend to an H6, it would be necessary

for there to be two adjacent vertices from B0∗. As a possible step towards proving the H6

conjecture, a B0∗ edge is a good starting point.

Proposition 6.4.5 In a prime non-split (P5, P 5, C5)-free graph, every edge {x, y} in B0∗

extends to a C4 with two vertices from VM .

Proof. Every vertex in B0∗ sees a vertex and misses a vertex in VM . Say x misses

m1 ∈ VM and y misses m2 ∈ VM . Since m1 is cosimplicial, it can not miss the {x, y} edge,

so m1 sees y and similarly, m2 sees x. Since VM forms a clique, m1 sees m2 and this forms

a C4. 2

Corollary 6.4.6 In a prime non-split (P5, P 5, C5)-free graph, every pair of nonadjacent

vertices in B∗1 extends to a 2K2 with two vertices from VE.

This proposition has not helped resolve the H6 conjecture, but it has lead to a other

interesting properties.

Proposition 6.4.7 In a prime non-split (P5, P 5, C5)-free graph, the set B0∗ is 2K2-free.

Proof. Let {x, y} and {v, w} be the two edges of the 2K2. Using 6.4.5, we have m1 adja-

cent to y and m2 adjacent to x, forming a C4. Since the cosimplicial vertices cannot miss the

{v, w} edge, let m1 see v. Also, m2 must see v or w, and if m2 sees v then {x, y, m1, m2, v}

forms a P 5. So m2 must miss v and see w. If m1 sees w then {x, y, m1, m2, w} is a P 5, but

if instead m1 misses w then w, v, m1, y, x is a P5. 2
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Figure 6.4: A prime (P5, P 5)-free graph G with no vertex of degree one in G or G

Corollary 6.4.8 In a prime non-split (P5, P 5, C5)-free graph, the set B∗1 is C4-free.

Proposition 6.4.9 In a prime non-split (P5, P 5, C5)-free graph, every vertex of B01 sees

at least one vertex of every edge in B0∗.

Proof. Proposition 6.4.5 gives us a C4 on any B0∗ edge, and since a b from B01 sees both

VM vertices of the C4, we will have a P 5 unless b sees some of the B0∗ edge. 2

Corollary 6.4.10 In a prime non-split (P5, P 5, C5)-free graph, every vertex of B01 misses

at least one vertex of every non-edge pair in B∗1.

Proposition 6.4.11 In a prime non-split (P5, P 5, C5)-free graph, either B0∗ is a stable

set or B∗1 is a clique.

Proof. Suppose neither of the two holds, so B0∗ has an edge {v1, v2} and B∗1 has a

non-edge {w1, w2}. Proposition 6.4.5 tells us that there are m1 and m2 from VM such that

v1, v2, m2, m1 is a C4, and similarly we have e1 and e2 from VE forming a 2K2 with edges

{w1, e1}, {w2, e2}. Since w1 and w2 see both m1 and m2, there is a P5 (e1, w1, mi, w2, e2), for

i = 1, 2 unless m1 and m2 are seen by e1 and/or e2. Now, there can not be any vertex from

VE seeing both m1 and m2 or else we have a P 5, so e1 and e2 must form a P4 with m1 and

m2. Notice then that {v1, v2, m1, m2, e1, e2} is an H6 with {e1, e2, m1, m2} forming its arms,

while this P4 is also the tunnel of the H6 formed by {w1, w2, e1, e2, m1, m2}. Lemma 6.3.4

tells us that this is impossible. 2

On small (nine or less vertices) prime non-split, (P5, P 5, C5)-free graphs, every graph

G has the property that either G or G has a vertex of degree one. Note that a vertex of

degree one is always simplicial, and so its single neighbour must be a vertex from VM . A

vertex of degree one will never be in a C5 or P 5, and the only way it can be in a P5 is if

it is an endpoint of the P5. The neighbour of an endpoint of a P5 is an end-P4 vertex, but

47



A

C

D

B

VM

VM

B0∗ B01

VE

VE

B∗1

B∗1

Figure 6.5: A prime (P5, P 5, C5)-free graph with a vertex of smallest degree that is not
simplicial

the only neighbour of the degree one vertex in our graph is a vertex from VM , implying

that the degree one vertex can not be the end of a P5. Hence, degree one vertices (in the

graph or in its complement) can always be removed from consideration when testing for

(P5, P 5, C5)-free graphs. It would be nice if it were true that there is always such a vertex,

but this fails when looking at graphs on ten vertices. That is, the smallest prime non-split

(P5, P 5, C5)-free graphs G with no degree one vertex in G or G have ten vertices.

Counterexample 6.4.12 Figure 6.4 is a prime non-split (P5, P 5)-free graph G without a

degree one vertex in G or G.

In the counterexample graph, the vertices of smallest degree are still simplicial. One

might wonder if the vertices of minimum degree are always simplicial. Figures 6.5 and 6.6

depict a family of graphs on at least 16 vertices with minimum degree three, one such vertex

being from the VB set. In Figure 6.5, the sets A, B, C, D represent collections of vertices, A

and C being stable sets while B and D being cliques. |A| = |B| and must have at least three

vertices each. A perfect matching between two sets of vertices is a set of edges forming a

one-to-one correspondence between the two sets. The vertices of A and B are joined by the

complement of a perfect matching, as is shown in Figure 6.6. The adjacency of a vertex in

figure 6.5 to one of the sets A, B, C, D represents a complete adjacency from that vertex to
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A B

Figure 6.6: The complement of a perfect matching joining sets A and B from Figure 6.5
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Figure 6.7: Some prime P5-free bipartite graphs

every vertex of the set. When each of the four sets contain exactly three vertices each, there

are many vertices of degree three in the graph, including the VB vertex of type B01. To

have the B01 as the only vertex with smallest degree, we can increase the sizes of A, B, C, D

to four each, giving the resulting graph 20 vertices in total. This is the smallest known

example showing that a vertex of minimum degree is not simplicial.

6.4.2 Bipartite Substructures

Recalling the theorems of Fouquet (Theorem 4.1.2) and Fouquet and Giakoumakis (Theo-

rem 4.2.3,) P5-free bipartite graphs play an important role in recognizing classes of (P5, P 5)-

free graphs. The prime graphs have a simple description and can be recognized in linear

time [19]. In each (stable set) partition of a prime P5-free bipartite graph, there is always

exactly one vertex of degree i for all i from 1 to |V |/2 [19]. Examples of prime P5-free

bipartite graphs are given in Figure 6.7.

We will define some notation to make our discussion of these graphs simpler. Let the

bipartitions of a prime P5-free bipartite graph be the stable sets A and B, and the vertices
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in these respective sets will be called ai and bj , where the subscripts coincide with the degree

of the vertex. So, for example, vertex a3 sees exactly three vertices from B. We will call a

prime P5-free bipartite graph with 2n vertices a Pn,n. Note that P4 is equal to P2,2 and H6

is P3,3.

It is interesting to see how vertices in a prime (P5, P 5, C5)-free graphs form around one

of these Pn,n subgraphs.

Lemma 6.4.13 Let H be a subgraph of a prime (P5, P 5, C5)-free graph isomorphic to a

Pn,n for some n ≥ 3, and let v be a vertex not in H that sees some ak of H and misses all

vertices in B. Then v sees ai for all i from k + 1 to n.

Proof. Note that ak must see the k vertices in B of highest degree, so if ak misses any

vertices in B it must miss b1, b2, . . . , bn−k. Assume v misses some at for some k +1 < t ≤ n.

Now v, ak, bn, at, b1 form a P5, so v must see at. 2

If two vertices have the same neighbourhood, they are called twins. Twins may or may

not be adjacent. The above lemma showed that v is the nonadjacent twin of bj for some j

from n − k + 1 to n.

Lemma 6.4.14 Let H be a subgraph of a prime (P5, P 5, C5)-free graph isomorphic to a

Pn,n for some n ≥ 3, and let T be the set of all twins of a1 with respect to H. Then T forms

a stable set.

Proof. Assume T has an edge. There must be a distinguisher which is partial on some

edge of T , and this distinguisher can not be in H . Let d see t1 and miss t2 where {t1, t2} is

an edge in T . Since d is not in T , it must miss bn. Now t1, bn, an, bj induces a P4 for every

1 ≥ j ≥ n − 1, and since d sees t1 and misses bn, lemma 6.2.1 tells us that d must see miss

every bj for 1 ≥ j ≥ n− 1. Also, t1, bn, ai, bn−1 forms a P4 for 2 ≥ i ≥ n, so the lemma says

that d sees all such ai. Now t2, t1, d, bn, a2 is a P 5, a contradiction. 2

We end this chapter with an example showing that identifying maximal Pn,n structures

is not sufficient to find two VE vertices in an H6.

Counterexample 6.4.15 If H is a maximal Pn,n in a prime non-split (P5, P 5, C5)-free

graph G, then the vertices a1 and b1 are not necessarily simplicial in G, as shown in Fig-

ure 6.8.

What can be shown, however, is that the neighbourhood of a1 will not have a non-edge

containing bn.

50



Figure 6.8: In a maximal P3,3, an a1 that is not simplicial

Proposition 6.4.16 If H is a maximal Pn,n in a prime non-split (P5, P 5, C5)-free graph

and v is a vertex not in H but sees a1 in H, then it must also see bn.

Proof. Assume v misses bn. The proof of the previous lemma used 6.2.1 to show that v

must see all ai and miss all bj , so v is a twin of bn. Some distinguisher d must be partial on

{v, bn}, but then H ∪ {v, d} induces a Pn+1,n+1. 2

Interpreting a P4 as a P2,2 and generalizing this to larger Pn,n forms all bipartite graphs

in our class. Consider the operation that takes any VM vertex m, creates a nonadjacent

twin of m, and then adds a new vertex of degree one distinguishing m and its twin. Given a

prime non-split (P5, P 5, C5)-free graph G, call Gm the resultant graph after applying this

operation on G and m.

Proposition 6.4.17 Let G be a prime non-split (P5, P 5, C5)-free graph and m be a vertex

in VM . Then Gm is prime (P5, P 5, C5)-free .

Proof. The creation of a twin will not create a P5, a P 5 nor a C5 as those are prime

graphs. Since m was cosimplicial, its twin will also see every edge and be cosimplicial as

well so it can not be the end of any P4. The addition of a vertex with degree one could only

possibly form a P5, specifically by being the end of a P5. But since its only neighbour is

not the end of a P4, we can be sure that no P5 is created, so Gm is (P5, P 5, C5)-free . 2

When applying this operation to Pn,n it creates Pn+1,n+1. This operation need not be

applied to just the non-split graphs; for instance, it can be applied to the bull and still

create a prime (P5, P 5, C5)-free graph, even when picking the vertex of the bull which is

not in a P4. A P5 will never be created as long as the vertex chosen to duplicate is not the

end of a P4. If m1 is the chosen vertex to duplicate, m2 is its twin, and distinguisher d sees
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m2 and misses m1, then m1 becomes the end of a P4 and so it moves to the VB set. The

distinguisher d belongs to the VE set, and m2 is in the VM set. Any vertices e1 from VE

adjacent to m1 before the duplication will see the nonedge {m1, m2} so they are no longer

simplicial and are the midpoint of the P4 (m1, e1, m2, d). Such vertices, e1, move to the VB

set, specifically into the B0∗ set. The complementary operation also applies, which would be

to copy a vertex in VE with an adjacent twin and create a distinguisher which is universal

on the graph but misses the new copied vertex.

Clearly, this operation can not generate all prime (P5, P 5, C5)-free graphs since it will

always create a graph with a vertex of degree one (or degree |V | − 2, in the case of the

complementary operation.) Figure 6.4 shows an example of a ten vertex graph without a

vertex of degree one or eight.
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Chapter 7

Conclusions and Future
Research

The recognition problem for perfectly orderable graphs is an NP-complete problem [47]

yet their optimization problems are simple to solve when given a perfect order, as de-

scribed in Chapter 2. (P5, P 5)-free and (P5, P 5, C5)-free graph classes form important

subclasses of perfectly orderable graphs, having key connections to many other well-studied

graph classes discussed in Chapter 3. The techniques used in Chapter 4 to recognize the

(P5, P 5, bull)-free and semi-P4-sparse graphs suggested that understanding the structure of

prime (P5, P 5, C5)-free graphs could help in recognizing them.

Partitioning the vertex set of prime non-split (P5, P 5, C5)-free graphs into the VM , VE

and VB sets is straightforward and can apply to any non-split prime graphs. The VM and

VE sets are easy to describe, as they form a clique and stable set, respectively. The VB set

was much harder to describe until it was refined down to three possible types of adjacencies

with the VE and VM sets. Namely, a vertex in VB either sees a VE and is universal on VM or

else it misses VE and can be either partial or universal on VM . Some adjacency properties

within and between the sets were given, for instance B0∗ is 2K2-free and every vertex in

B01 sees every edge of B0∗.

Future refinements could include the property of VE ∪ VM -type P4-inclusion. For in-

stance, every VE is the end of some P4, but there are VE vertices that are only in P4s

containing vertices from VB . A full characterization of the nature of VB would be an asset

in a description of prime (P5, P 5, C5)-free graphs. We are inclined to formally state this

special case of the H6 conjecture as an open problem:

Open problem 7.0.18 Let G be a prime non-split (P5, P 5)-free graph with |VE | = 2 =

|VM |. Prove or disprove that there exists an H6 with arms from VE ∪ VM in G or G.

The P4-wing orientation lemmas provide a framework for solving problems that may

otherwise not fall easily to proofs relying on adjacency properties. The orientation has the
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power to hold and use a lot of information on just one or two edges, for instance, Lemma 6.2.9

deduces information over six vertices from only one doubly-oriented edge. The orientation

lemmas may be instrumental in a characterization of prime (P5, P 5, C5)-free graphs.

Chapter 5 introduced four self-complementary classes of perfectly orderable graphs and

gave results only for the PO4 class. The polynomial-time status of the recognition problem

is open for all four classes. Some forbidden subgraphs were given for PO4, but is not

exhaustive. A forbidden induced subgraph characterization for any of those classes would

gain significant attention. The brittle graphs are a subset of PO2 but its precise position in

the hierarchy of the four nested classes is unclear. It would be interesting to know this as

well.

Finally, we leave open the problem of recognizing (P5, P 5)-free and (P5, P 5, C5)-free

graphs in o(n3)-time. Even assuming the H6 conjecture to be true, there is no clear way of

using it towards recognizing the graph class. Furthermore, the (P5, P 5, C5)-free graphs are

perfectly orderable, and the vertex degrees are all that is needed to create a Welsh-Powell

ordering and thus a perfect ordering of the vertices. Such an ordering is a strong property

to have, but aside from finding max clique, max independent set, min clique cover and min

colouring, we have found no added benefits from the ordering. It would be interesting to

derive some structural properties of, or prove some propositions on, (P5, P 5, C5)-free graphs

from a perfect order.
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