Playing Reverse Hex

Hayward Henderson Toft

Comp Sci U of A
Edmonton Alberta Canada

Google
CA USA

IMADA
Odense Denmark

Jan 2011
proofs: allow holey boards
color symmetry
Some Complete Strategies

move only if ≥ 2 empty cells

... so can end in draw
TRex from psn P with empty cell c
player Z = X or Y:

- X wins $(P + Y(c), Z)$ \implies X not-loses (P, Z)
- Y wins (P, Z) \implies Y not-loses $(P + Y(c), Z)$
Lemma

TRex from psn P with empty cell c
player Z = X or Y:

• X wins \((P + Y(c), Z)\) \iff X not-loses \((P, Z)\)
• Y wins \((P, Z)\) \iff Y not-loses \((P + Y(c), Z)\)
Lemma

TRex from psn P with empty cell c
player Z = X or Y:

- X wins \((P + Y(c), Z)\) \(\iff\) X not-loses \((P, Z)\)
- Y wins \((P, Z)\) \(\iff\) Y not-loses \((P + Y(c), Z)\)
Theorem

TRex from color-symmetric psn P with \(\geq 2 \) empty cells:

- player to-move not-loses
- player not-to-move not-loses
Theorem

TRex from color-symmetric psn P with ≥ 2 empty cells:

- player to-move not-loses
- player not-to-move not-loses
Theorem

TRex from color-symmetric psn P with ≥ 2 empty cells:

- player to-move not-loses
- player not-to-move not-loses
Some Complete Strategies

to-move not-loses

pf by cont'n
TRex
Rex
Some Complete Strategies

not-to-move not-loses

pf by cont’n
Theorem

Rex color-symmetric P k empty cells:

- $k \geq 2 \implies$ exists non-losing move
- k even \implies 1st player not-loses
- k odd \implies 2nd player non-loses

* wins if P has no holes
Rex color-symmetric P k empty cells:

- $k \geq 2 \iff$ exists non-losing move
- k even \iff 1st player not-loses
- k odd \iff 2nd player non-loses

* wins if P has no holes
Theorem

Rex color-symmetric P k empty cells:

• $k \geq 2 \implies$ exists non-losing move
• k even \implies 1st player not-loses*
• k odd \implies 2nd player non-loses*

* wins if P has no holes
Theorem

Rex color-symmetric P \(k \) empty cells:

- \(k \geq 2 \implies \) exists non-losing move
- \(k \) even \(\implies \) 1st player non-loses*
- \(k \) odd \(\implies \) 2nd player non-loses*

* wins if P has no holes
Theorem

Rex color-symmetric P \(k \) empty cells:

- \(k \geq 2 \implies \) exists non-losing move
- \(k \) even \(\implies \) 1st player not-loses\(*
- \(k \) odd \(\implies \) 2nd player non-loses\(*

* wins if P has no holes
Lemma

Rex color-symmetric P \ k empty cells:

• \(k \geq 2 \) even:
 \(X \text{ wins } (P, Y) \iff \forall \text{ empty } c, X \text{ wins } (P + X(c), Y) \)

• \(k \geq 3 \) odd:
 \(X \text{ wins } (P, X) \iff \forall \text{ empty } c, X \text{ wins } (P + X(c), X) \)
Lemma

Rex color-symmetric P \(k \) empty cells:

- \(k \geq 2 \) even:
 \(X \) wins \((P, Y) \) \(\iff \) \(\forall \) empty \(c \), \(X \) wins \((P + X(c), Y) \)

- \(k \geq 3 \) odd:
 \(X \) wins \((P, X) \) \(\iff \) \(\forall \) empty \(c \), \(X \) wins \((P + X(c), X) \)
Lemma

Rex color-symmetric P k empty cells:

- $k \geq 2$ even:
 \[X \text{ wins } (P, Y) \iff \forall \text{ empty } c, X \text{ wins } (P + X(c), Y) \]

- $k \geq 3$ odd:
 \[X \text{ wins } (P, X) \iff \forall \text{ empty } c, X \text{ wins } (P + X(c), X) \]
Theorem

Rex $n \times n$ P $2t$ empty cells
long diagonal color-symmetry
c in corner empty wedge and X-peripheral:

- X not-loses $(P + X(c), Y)$
Theorem

Rex \(n \times n \) P \(2t \) empty cells
long diagonal color-symmetry
c in corner empty wedge and X-peripheral:

- X not-loses \((P + X(c), Y)\)
X not-loses \((P + X(c), Y)\) pf by cont'n
some winning $2t \times 2t$ openings
Theorem

Rex $n \times n$ P

P color-symmetric

$2t + 1$ empty cells

$P' = P + X(c)$:

- c-reflection $d \neq c \implies Y$ not-loses $P' + Y(d)$

- long diagonal symmetry, d Y-peripheral in empty corner wedge of $P' \implies Y$ not-loses $P' + Y(d)$
Theorem

Rex \(n \times n \) P

P color-symmetric

2t + 1 empty cells

\(P' = P + X(c) \):

- \(c \)-reflection \(d \neq c \implies \)
 Y not-loses \(P' + Y(d) \)

- long diag’l symmetry, \(d \) Y-peripheral in empty corner wedge of \(P' \)
 \(Y \) not-loses \(P' + Y(d) \)
Theorem

Rex \(n \times n \) P

P color-symmetric

2\(t + 1 \) empty cells

\(P' = P + X(c) \):

- c-reflection \(d \neq c \implies Y \) not-loses \(P' + Y(d) \)

- long diag'l symmetry, \(d \) Y-peripheral in empty corner wedge of \(P' \implies Y \) not-loses \(P' + Y(d) \)
Theorem

Rex $n \times n$ P
P color-symmetric

$2t + 1$ empty cells

$P' = P + X(c)$:

• c-reflection $d \neq c \implies Y$ not-loses $P' + Y(d)$

• long diag’l symmetry, d Y-peripheral in empty corner wedge of $P' \implies Y$ not-loses $P' + Y(d)$
Theorem

Rex \(n \times n \) P
\[P \text{ color-symmetric} \]
\[2t + 1 \text{ empty cells} \]
\[P' = P + X(c) : \]

• c-reflection \(d \neq c \implies \)
Y not-loses \(P' + Y(d) \)

• long diag’l symmetry, \(d \) Y-peripheral
in empty corner wedge of \(P' \implies \)
Y not-loses \(P' + Y(d) \)
some winning 3×3 replies
some winning 5×5 replies
a 4×4 example

black-to-play wins from here so ...
a 4×4 example

...black-to-play wins from here
Some Complete Strategies

2×2

1st-player win

e.g. force 2nd-player this way
Some Complete Strategies

3 × 3

2nd-player win

Playing Reverse Hex
Some Complete Strategies

4 × 4

1st-player win

Playing Reverse Hex
4 × 4

another way to win
5 × 5

2nd-player win

Playing Reverse Hex
Some Complete Strategies

2×2

all winning openings
3×3
all winning replies

TRex
Rex
Some Complete Strategies

Playing Reverse Hex
Some Complete Strategies

4 × 4 all (but 2?) winning openings

Playing Reverse Hex
thanks to

- NSERC Alberta Ingenuity
- UofA GAMES UofA Hex
- M Mueller J Schaeffer