Playing Reverse Hex

Hayward Henderson Toft

Comp Sci U of A Google
Edmonton Alberta Canada CA USA
IMADA
Odense Denmark

Jan 2011

Rex

proofs: allow holey boards

color symmetry

TRex truncated Rex

move only if ≥ 2 empty cells ...so can end in draw

Lemma

TRex from psn P with empty cell c player $Z=X$ or Y :

- X wins $(P+Y(c), Z) \Longrightarrow X$ not-loses (P, Z) - Y wins $(P, Z) \Longrightarrow Y$ not-loses $(P+Y(c), Z)$

Lemma

TRex from psn P with empty cell c player $\mathrm{Z}=\mathrm{X}$ or Y :

- X wins $(P+Y(c), Z) \Longrightarrow X$ not-loses (P, Z)

Lemma

TRex from psn P with empty cell c player $\mathrm{Z}=\mathrm{X}$ or Y :

- X wins $(P+Y(c), Z) \Longrightarrow X$ not-loses (P, Z)
- Y wins $(P, Z) \Longrightarrow Y$ not-loses $(P+Y(c), Z)$

Theorem

TRex from color-symmetric psn P with ≥ 2 empty cells:

- player to-move not-loses - player not-to-move not-loses

Theorem

TRex from color-symmetric psn P with ≥ 2 empty cells:

- player to-move not-loses
- player not-to-move not-loses

Theorem

TRex from color-symmetric psn P with ≥ 2 empty cells:

- player to-move not-loses
- player not-to-move not-loses

to-move not-loses

not-to-move not-loses

Theorem

Rex color-symmetric $P \quad k$ empty cells:

- $k \geq 2 \Longrightarrow$ exists non-losing move

- k even $\Longrightarrow 1$ st player not-loses*
- k odd \Longrightarrow 2nd player non-loses*
wins if P has no holes

Theorem

Rex color-symmetric $P \quad k$ empty cells:

- $k \geq 2 \Longrightarrow$ exists non-losing move
- k even \Longrightarrow 1st player not-loses*
- k odd \Longrightarrow 2nd player non-loses*
wins if P has no holes

Theorem

Rex color-symmetric $\mathrm{P} \quad k$ empty cells:

- $k \geq 2 \Longrightarrow$ exists non-losing move
- k even \Longrightarrow 1st player not-loses*
- k odd \Longrightarrow 2nd player non-loses*
wins if P has no holes

Theorem

Rex color-symmetric $P \quad k$ empty cells:

- $k \geq 2 \Longrightarrow$ exists non-losing move
- k even \Longrightarrow 1st player not-loses*
- k odd \Longrightarrow 2nd player non-loses*
wins if P has no holes

Theorem

Rex color-symmetric $P \quad k$ empty cells:

- $k \geq 2 \Longrightarrow$ exists non-losing move
- k even $\Longrightarrow 1$ st player not-loses*
- k odd \Longrightarrow 2nd player non-loses*
* wins if P has no holes

Lemma

Rex
 color-symmetric P
 k empty cells:

- $k \geq 2$ even:

X wins $(P, Y) \Longrightarrow \forall$ empty c, X wins $(P+X(c), Y)$

X wins $(P, X) \Longrightarrow \forall$ empty c, X wins $(P+X(c), X)$

Lemma

Rex color-symmetric $P \quad k$ empty cells:

- $k \geq 2$ even:
X wins $(P, Y) \Longrightarrow \forall$ empty c, X wins $(P+X(c), Y)$

- $k \geq 3$ odd:

X wins $(P, X) \Longrightarrow \forall$ empty c, X wins $(P+X(c), X)$

Lemma

Rex color-symmetric $P \quad k$ empty cells:

- $k \geq 2$ even:
X wins $(P, Y) \Longrightarrow \forall$ empty c, X wins $(P+X(c), Y)$
- $k \geq 3$ odd:
X wins $(P, X) \Longrightarrow \forall$ empty c, X wins $(P+X(c), X)$

Theorem

Rex $\mathrm{n} \times \mathrm{n} \mathrm{P} \quad 2 t$ empty cells long diagonal color-symmetry c in corner empty wedge and X -peripheral:

Theorem

Rex $\mathrm{n} \times \mathrm{n} \mathrm{P} \quad 2 t$ empty cells long diagonal color-symmetry c in corner empty wedge and X-peripheral:

- X not-loses ($\mathrm{P}+\mathrm{X}(\mathrm{c}), \mathrm{Y})$

X not-loses ($\mathrm{P}+\mathrm{X}(\mathrm{c}), \mathrm{Y})$

some winning $2 t \times 2 t$ openings

Theorem

Rex

$\mathrm{n} \times \mathrm{n} \mathrm{P}$
 P color-symmetric

$2 t+1$ empty cells $P^{\prime}=P+X(c):$

- c-reflection $d \neq \mathrm{c} \Longrightarrow$ Y not-Ioses $P^{\prime}+Y(d)$
 - long diag'l symmetry, d Y-peripheral in empty corner wedge of P^{\prime} Y not-loses $P^{\prime}+Y(d)$

Theorem

Rex

$\mathrm{n} \times \mathrm{n} \mathrm{P}$
 P color-symmetric

$2 t+1$ empty cells $P^{\prime}=P+X(c)$:

- c-reflection $\mathrm{d} \neq \mathrm{c} \Longrightarrow$

Y not-loses P'+Y(d)

- long diag'l symmetry, d Y-peripheral in empty corner wedge of P' Y not-loses $\mathrm{P}^{\prime}+\mathrm{Y}(\mathrm{d})$

Theorem

Rex

$\mathrm{n} \times \mathrm{n} \mathrm{P}$
 P color-symmetric

$2 t+1$ empty cells $P^{\prime}=P+X(c)$:

- c-reflection $\mathrm{d} \neq \mathrm{c} \Longrightarrow$

Y not-loses $\mathrm{P}^{\prime}+\mathrm{Y}(\mathrm{d})$

- long diag'I symmetry, d Y-peripheral
in empty corner wedge of P^{\prime}
Y not-loses $\mathrm{P}^{\prime}+\mathrm{Y}(\mathrm{d})$

Theorem

Rex

$\mathrm{n} \times \mathrm{n} \mathrm{P}$
 P color-symmetric

$2 t+1$ empty cells $P^{\prime}=P+X(c)$:

- c-reflection $\mathrm{d} \neq \mathrm{c} \Longrightarrow$

Y not-loses $\mathrm{P}^{\prime}+\mathrm{Y}(\mathrm{d})$

- long diag'l symmetry, d Y-peripheral in empty corner wedge of $\mathrm{P}^{\prime} \Longrightarrow$

Theorem

Rex

$\mathrm{n} \times \mathrm{n} \mathrm{P}$
 P color-symmetric

$2 t+1$ empty cells $P^{\prime}=P+X(c)$:

- c-reflection $\mathrm{d} \neq \mathrm{c} \Longrightarrow$

Y not-loses $\mathrm{P}^{\prime}+\mathrm{Y}(\mathrm{d})$

- long diag'I symmetry, d Y-peripheral in empty corner wedge of $P^{\prime} \Longrightarrow$
Y not-loses $\mathrm{P}^{\prime}+\mathrm{Y}(\mathrm{d})$

some winning 3×3 replies

some winning 5×5 replies

a 4×4 example

black-to-play wins from here

a 4×4 example

... black-to-play wins from here

1st-player win

e.g. force 2nd-player this way

3×3

2nd-player win

$$
4 \times 4
$$

1st-player win

$$
4 \times 4
$$

another way to win

5×5

2nd-player win

2×2

all winning openings

all winning replies

$$
4 \times 4
$$

all (but 2?) winning openings

thanks to

- NSERC Alberta Ingenuity
- UofA GAMES UofA Hex
- M Mueller J Schaeffer

