SOME QUESTIONS ON HEX

U MONTANA TALK

hayward@ualberta.ca

computing UAlberta

2014 April 14
THANK YOU

- invitation Prof Mark Kayll UMontana
- solving 10×10 Hex joint with Jakub Pawlewicz
- builds on work with B Arneson, P Henderson
- machine Martin Müller
- photo courtesy MIT Museum, MIT, Cambridge MA
- Natural Sciences and Engineering Research Council of Canada
1 SOME QUESTIONS

2 HEX

3 KNOWLEDGE

4 SOME ANSWERS
is hex fair?
when will computers solve 11×11 hex?
11×11 hex, 10-1 odds, 1st 2 stones: wager?
write hex player in 8 hours: algorithms?
1942 HEX

RULES

- 2 players, alternate moves
- win: connect your two sides
1942 HEX

RULERS

- 2 players, alternate moves
- win: connect your two sides
PROOF

- lemma: extra X-cell ok for player X
- lemma: no draws
- suppose P2 has win strategy S2
- then P1 can move anywhere, forget move, and follow S2
- thus P1 has win strategy, contradiction \square
NO-DRAW

SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

HAYWARD@UALBERTA.CA
SOME QUESTIONS ON HEX
SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

NO-DRAW

HAYWARD@UALBERTA.CA
SOME QUESTIONS ON HEX
\textbf{N x N+1 Hex: longer-side win}
N x N+1 Hex: longer-side win

A diagram of an N x N+1 Hex board is shown, highlighting the winning condition where the longer side wins. The diagram includes labels for each cell, with letters A to U arranged in a hexagonal pattern.
1951 Shannon machine
Some questions on hex

1951 Shannon machine

- play on any graph
- two marked vertices
- black move: ‘short’ any vertex (make nbrs clique)
- white move: ‘cut’ any vertex (delete)
- black wins iff two marked vertices are shorted (connected)
- generalizes Hex
1951 Shannon Machine
1951 Shannon machine
1951 **Shannon Machine**

- Some Questions
- Hex
- Knowledge
- Some Answers

Shannon Machine

Provably Hard

Humans

Computers

T

T

hayward@ualberta.ca

Some questions on hex
PROVABLY HARD

- 1975 Even & Tarjan
 Shannon v-switching: PS-c
- 1981 Stefan Reisch
 Hex: PS-c
- 2000 Clay Math Inst
 P vs NP: $1,000,000
SOLVED OPENINGS

- 2001 Yang 17/49 7x7
- 2002 Yang 8x8
- 2003 Yang 9x9
- 2004 Noshita 7x7
- 2005 Noshita 8x8
- 2006 Mishima 8x8
<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Enderton</td>
<td>6x6</td>
</tr>
<tr>
<td>2000</td>
<td>van Rijswijck</td>
<td>6x6</td>
</tr>
<tr>
<td>2003</td>
<td>H Bjö Joh Kan Po vRij</td>
<td>5d</td>
</tr>
<tr>
<td>2007</td>
<td>Rasmussen et al.</td>
<td>7x7</td>
</tr>
<tr>
<td>2009</td>
<td>Arneson H Henderson</td>
<td>4d</td>
</tr>
<tr>
<td>2010</td>
<td>A H H</td>
<td>25d</td>
</tr>
<tr>
<td>2012</td>
<td>Pawlewicz H</td>
<td>110d x 24 thread</td>
</tr>
<tr>
<td>2013</td>
<td>Pawlewicz H</td>
<td>63d x 24 thread</td>
</tr>
</tbody>
</table>

2003 H Bjö Joh Kan Po vRij 5d 7x7
2007 Rasmussen et al. 7x7
2009 Arneson H Henderson 4d 8x8
2010 A H H 25d some 9x9
2012 Pawlewicz H 110d x 24 thread 9x9
2013 Pawlewicz H 63d x 24 thread centre 10x10
SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS
PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

COMPUTERS

some questions on hex

hayward@ualberta.ca

SOME QUESTIONS ON HEX
COMPUTERS
SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

COMPUTERS

some questions
hex
knowledge
some answers
properties
shannon machine
provably hard
humans
computers

hayward@ualberta.ca

sone questions on hex
SOME QUESTIONS

HEX

KNOWLEDGE

SOME ANSWERS

PROPERTIES

SHANNON MACHINE

PROVABLY HARD

HUMANS

COMPUTERS

COMPUTERS

hayward@ualberta.ca

SOME QUESTIONS ON HEX
Some questions on hex
COMPUTERS

SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

hayward@ualberta.ca

SOME QUESTIONS ON HEX
COMPUTERS

SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

SOME QUESTIONS ON HEX

HAYWARD@UALBERTA.CA
COMPUTERS

SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

some questions on hex

hayward@ualberta.ca

SOME QUESTIONS ON HEX
COMPUTERS

SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS
PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

hayward@ualberta.ca

SOME QUESTIONS ON HEX
virtual connections: combining rules, mustplay
inferior cells: dead, captured, etc.
A VIRTUAL CONNECTION
A VIRTUAL CONNECTION
COMBINING RULE: AND (FULL)
COMBINING RULE: AND (SEM I)
COMBINING RULE: AND (SEMI)
COMBINING RULE: AND (SEMI)
COMBINING RULE: OR

some questions on hex
COMBINING RULE: OR
COMBINING RULE: OR
COMBINING RULE: OR
WHERE MUST WHITE PLAY?
WHERE MUST WHITE PLAY?
WHERE MUST WHITE PLAY?
WHERE MUST WHITE PLAY?
DEAD

SOME QUESTIONS
HEX
KNOWLEDGE
SOME ANSWERS

VIRTUAL CONNECTIONS
INFERIOR CELLS
BLACK-DOMINATED (DOT SUPERIOR)
BLACK-CAPTURED
BLACK-DOMINATED (DOT SUPERIOR)
BLACK-CAPTURE-REVERSIBLE (TO WHITE DOT)
BLACK FILL DECOMPOSITION
STAR DECOMPOSITION
BLACK STAR DECOMP DOMINATION
modify H-search

- and/or combining rules + capture
FAIR ?
Some questions on Hex

Knowledge

Some answers

FAIR?

- $n \times n$, $n \geq 2$, most win positions have losing moves
- $n \times n$, random play, n even: $\text{Prob}(1\text{pw}) = 0.5$
- $n \times n$, random play, n odd: $\text{Prob}(1\text{pw}) \to 0.5$ (?)
HOW LONG UNTIL 11x11?
HOW LONG UNTIL 11x11?

<table>
<thead>
<tr>
<th>yr</th>
<th>size</th>
<th>states (approx)</th>
<th>center cell: solver fn calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>2x2</td>
<td>9.0 e 0</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>3x3</td>
<td>5.5 e 1</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>4x4</td>
<td>7.6 e 5</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>5x5</td>
<td>4.0 e 9</td>
<td>0</td>
</tr>
<tr>
<td>42-95</td>
<td>6x6</td>
<td>4.0 e 14</td>
<td>2</td>
</tr>
<tr>
<td>01-03</td>
<td>7x7</td>
<td>1.5 e 20</td>
<td>68</td>
</tr>
<tr>
<td>02-09</td>
<td>8x8</td>
<td>1.0 e 27</td>
<td>19 554</td>
</tr>
<tr>
<td>03-12</td>
<td>9x9</td>
<td>2.7 e 34</td>
<td>912 352</td>
</tr>
<tr>
<td>13-</td>
<td>10x10</td>
<td>1.2 e 43</td>
<td>5 821 097 789</td>
</tr>
<tr>
<td>11x11</td>
<td>2.2 e 52</td>
<td>??? ??? ??? ??? ??? ????</td>
<td></td>
</tr>
</tbody>
</table>
11x11 HANDICAP: WAGER?
11x11 HANDICAP: WAGER?

- exists simple strategy that wins
 - up to 5×5 with 1 stone
 - up to 11×11 with 2 stones
 - up to 17×17 with 3 stones
 - ...
8 HOURS TO CODE PLAYER: ALGORITHMS?
8 hours to code player: algorithms?

Basics

- search? flat monte-carlo (random simulations, keep stats)
- detect wins? union-find
- stats: all-moves-as-first (each winning stone gets bonus)
- move selection: highest AMAF score

Improvements

- in simulations, save bridges
- monte carlo tree search
- code sample: https://github.com/ryanbhayward/miowy

webdocs.cs.ualberta.ca/~hayward/670gga/jem/gga.html
THANK YOU

- invitation Prof Mark Kayll UMontana
- solving 10×10 Hex joint with Jakub Pawlewicz
- builds on work with B Arneson, P Henderson
- machine Martin Müller
- photo courtesy MIT Museum, MIT, Cambridge MA
- Natural Sciences and Engineering Research Council of Canada