SOME QUESTIONS ON HEX
 U Montana talk

hayward@ualberta.ca

computing UAlberta

2014 april 14

THANK YOU

- invitation Prof Mark Kayll UMontana
- solving 10×10 Hex joint with Jakub Pawlewicz
- builds on work with B Arneson, P Henderson
- machine Martin Müller
- photo courtesy MIT Museum, MIT, Cambridge MA
- Natural Sciences and Engineering Research Council of Canada

(1) sOME QUESTIONS

(2) HEX
(3) KNOWLEDGE

4 SOME ANSWERS

SOME QUESTIONS

- is hex fair ?
- when will computers solve 11×11 hex ?
- 11×11 hex, $10-1$ odds, 1 st 2 stones: wager ?
- write hex player in 8 hours: algorithms ?

1942 HEX

RULES

- 2 players, alternate moves
- win: connect your two sides

1942 HEX

RULES

- 2 players, alternate moves
- win: connect your two sides

n X n Hex: 1st-Player win

PROOF

- lemma: extra X-cell ok for player X
- lemma: no draws
- suppose P2 has win strategy S2
- then P1 can move anywhere, forget move, and follow S2
- thus P1 has win strategy, contradiction \square

NO－DRAW

NO-DRAW

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

PROPERTIES

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

1951 ShanNon machine

1951 ShanNon machine

- play on any graph
- two marked vertices
- black move: 'short' any vertex (make nbrs clique)
- white move: 'cut' any vertex (delete)
- black wins iff two marked vertices are shorted (connected)
- generalizes Hex

1951 ShanNon machine

1951 Shannon machine

1951 ShanNon machine

PROVABLY HARD

- 1975 Even \& Tarjan
- 1981 Stefan Reisch
- 2000 Clay Math Inst

Shannon v-switching: PS-c
Hex: PS-c
P vs NP: \$1 000000

HUMANS

SOLVED OPENINGS

- 2001 Yang 17/49 7x7
- 2002 Yang 8×8
- 2003 Yang 9×9
- 2004 Noshita 7×7
- 2005 Noshita 8x8
- 2006 Mishima 8×8

COMPUTERS

SOLVED OPENINGS				
1995	Enderton		6×6	
2000	van Rijswijck		6×6	
2003	H Bjö Joh Kan Po vRij	5d	7×7	
2007	Rasmussen et al.		7×7	
2009	Arneson H Henderson	4d	8×8	
2010	A H H	$25 d$	some 9×9	
2012	Pawlewicz H	$110 \mathrm{~d} \times 24$ thread	9×9	
2013	Pawlewicz H	$63 d \times 24$ thread	centre 10×10	

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

COMPUTERS

4ロ ${ }^{\circ} 4$ 号 1 引

KNOWLEDGE

- virtual connections: combining rules, mustplay
- inferior cells: dead, captured, etc.

A VIRTUAL CONNECTION

A VIRTUAL CONNECTION

COMBINING RULE: AND (FULL)

COMBINING RULE: AND (SEMI)

COMBINING RULE: AND (SEMI)

COMBINING RULE: AND (SEMI)

COMBINING RULE: OR

COMBINING RULE: OR

COMBINING RULE: OR

COMBINING RULE: OR

WHERE MUST WHITE PLAY?

DEAD

BLACK-DOMINATED (DOT SUPERIOR)

BLACK-CAPTURED

BLACK-DOMINATED (DOT SUPERIOR)

BLACK-CAPTURE-REVERSIBLE (TO WHITE DOT)

BLACK FILL DECOMPOSITION

STAR DECOMPOSITION

BLACK STAR DECOMP DOMINATION

modify H-search

- and/or combining rules + capture

SOME QUESTIONS

HEX
KNOWLEDGE SOME ANSWERS

SOME ANSWERS

FAIR ?

FAIR ?

- $n \times n, n \geq 2$, most win psns have losing moves
- $n \times n$, random play, n even: $\operatorname{Prob}(1 \mathrm{pw})=.5$
- $n \times n$, random play, n odd: $\operatorname{Prob}(1 \mathrm{pw}) \rightarrow .5$ (?)

HOW LONG UNTIL 11X11?

HOW LONG UNTIL 11X11?

yr	size	states (approx)	center cell: solver fn calls
42	2×2	9.0 e 0	0
42	3×3	5.5 e 1	0
42	4×4	7.6 e 5	0
42	5×5	4.0 e 9	0
$42-95$	6×6	4.0 e 14	2
$01-03$	7×7	1.5 e 20	68
$02-09$	8×8	1.0 e 27	19554
$03-12$	9×9	2.7 e 34	912352
$13-$	10×10	1.2 e 43	5821097789
	11×11	2.2 e 52	$? ? ? ~ ? ? ? ~ ? ? ? ~ ? ? ? ~ ? ? ? ~$

11 x 11 HANDICAP: WAGER ?

11x11 HANDICAP: WAGER ?

- exists simple strategy that wins
- up to 5×5 with 1 stone
- up to 11×11 with 2 stones
- up to 17×17 with 3 stones
- ...
webdocs.cs.ualberta.ca/~hayward/talks/hex.handicap.pdf

8 HOURS TO CODE PLAYER : ALGORITHMS ?

8 HOURS TO CODE PLAYER : ALGORITHMS ?

basics

- search ? flat monte-carlo (random simulations, keep stats)
- detect wins ? union-find
- stats: all-moves-as-first (each winning stone gets bonus)
- move selection: highest AMAF score
improvements
- in simulations, save bridges
- monte carlo tree search
- code sample: https://github.com/ryanbhayward/miowy webdocs.cs.ualberta.ca/~hayward/670gga/jem/gga.html

THANK YOU

- invitation Prof Mark Kayll UMontana
- solving 10×10 Hex joint with Jakub Pawlewicz
- builds on work with B Arneson, P Henderson
- machine Martin Müller
- photo courtesy MIT Museum, MIT, Cambridge MA
- Natural Sciences and Engineering Research Council of Canada

