Notes on Hex

Ryan Hayward
hayward@cs.ualberta.ca

Jack van Rijswijck
Yngvi Björnsson
Mike Johanson
Morgan Kan
Maryia Kazekevich
Nathan Po

Thankyou ...

NSERC Research Grant
UofA Games Research Group
Jonathan Schaeffer
Martin Mueller
Michael Buro
overview

- history/properties
- recent results
 - game-playing programs
 - solving
 - dead cell analysis
1942 Hein

“math & games, games & math”
1948 Nash (& Gale)

“connecting topology and game theory”
Theorem (Hein-Nash)
exists 1st-player-win strategy for Hex

Lemma: extra stones don’t hurt
 ● supp. for P, win-strategy S for gamestate G
 ● supp. G’ obtained from G by adding P-stone
 ● then for P, S yields win-strategy S’ for G’

Proof of theorem
 ● assume exists 2pw strategy
 ● 1st player makes 1st move anywhere
 ● 1st player uses lemma and 2pw strategy to obtain 1pw strategy
 ● so exists 1pw contradiction
1953 Shannon (& Moore)

“the problem of designing game-playing machines is fascinating . . .

paradoxically, the postional judgment of this machine was good; its chief weakness was in end-game combinatorial play”
1957 Gardner

“played on the tiles of the bathroom floor”
1975 Schensted & Titus

“whenever you feel you must use a car, try playing Y until the feeling passes”
Hex special case of Y

Schensted’s Y-reduction

\[\rightarrow \rightarrow \rightarrow \rightarrow \]
reversing Y-reduction
Theorem (Schensted)
If Y-board completely covered with B/W stones, then B XOR W has win-set.

Proof (induction)

* start with covered Y_n board
* Y-reduce to obtain covered Y_{n-1} board
* w.l.o.g. Y_{n-1} board has B-win-set
* corresp. B-cells on Y_n board form B-win-set

Corollary no draws in Y

Corollary no draws in Hex
1977 Berge

“l’art subtil du Hex”
virtual connections, must play
1981 Berge

“...to solve some Hex problem by using nontrivial theorems about combinatorial properties of sets ...”
1976 Even & Tarjan

generalization of Hex PSACE-complete

1981 Reisch

solving arbitrary Hex states is PSPACE-complete

1984 Berge

“computers will never beat humans at Hex”
Computer Games Olympiad

- Hexy-Queenbee-KillerBee 8-4-0 London 2000
- Six-Mongoose 6-2 Graz 2003
- Six-Mongoose 5-1 Bar-Ilan 2004
Bar-Ilan Game 3. Six (black) wins.

Bar-Ilan Game 4. Mongoose (black) wins.
dead cell analysis (H-vR-B-J)
monophonic intervals

- node v is dead if,

 for every completion of $G - v$,
 colour of v does not change winner

- live iff not dead

- Theorem: live iff on terminal-terminal monophonic interval of reduced graph
- computing m. i. NP-hard (Fellows)
- dead nodes often simplicial
death has consequences

• P-captured set of nodes:

 adding P-stones doesn’t change game

• P-dominated set of nodes:

 some P-move in set P-captures the rest;
 such a move is P-dominating;
 P can ignore all other moves into the set
dead cell analysis
A set S of unoccupied nodes is

P-captured:

if S is empty, or
for each opponent-move to m in S
• $S - m$ is P-dominated, and
• filling $S - m$ with P-stones makes m dead

P-dominated:

if S is empty, or
there is some P-move to m in S so that
• $S - m$ is P-captured
opening winning moves: previous results
new results