Monophonic Intervals
and the Game of Hex

Yngvi Björnsson
Ryan Hayward
Mike Johanson
Jack van Rijswijk

yth@ru.is
hayward@cs.ualberta.ca
johanson@cs.ualberta.ca
javhar@cs.ualberta.ca

Thankyou ...

NSERC Research Grant
UofA Games Research Group
the game of Hex
’42 Piet Hein Copenhagen
’48 John Nash (& David Gale) Princeton
’53 Claude Shannon & E.F. Moore Murray Hill
’57 Martin Gardner ? Hendersonville NC
’69 Anatole Beck Madison WI
’75 Craige Schensted & Ch’ Titus Peaks Is. ME
’76 Shimon Even & Robert Tarjan
’77, ’81 Claude Berge Paris
’79 David Gale Berkeley CA
’81 Stefan Reisch ? Germany
’91 Sid Sackson & Klutz Press Palo Alto CA
’00 Jack van Rijswijck Edmonton AB
’00 Cameron Browne Brisbane
’00 Vadim Anshelevich Richardson TX
’01 Jing Yang Winnipeg MB
’02 H Edmonton AB
’03 H B J K P vR Edmonton AB
’04 H vR Edmonton AB
Claude Berge

• *L’Art Subtil du Hex* ’77
• *Some remarks about a Hex problem...* ’81

It would be nice to solve some Hex problem by using nontrivial theorems about combinatorial properties of sets.
Berge puzzle: Black to play and win
Berge and the Art of Hex

mystery of the missing stone
(and other stories)

White to play and win
monophonic intervals

- node v is dead if,
 for every completion of $G - v$,
 colour of v does not change winner
- live iff not dead
- Theorem: live iff on terminal-terminal monophonic interval of reduced graph
- computing m. i. NP-hard (Fellows)
- dead nodes often simplicial
death has consequences

- P-captured set of nodes:
 adding P-stones doesn’t change game

- P-dominated set of nodes:
 some P-move in set P-captures the rest;
such a move is P-dominating;
P can ignore all other moves into the set
dead cell analysis
A set S of unoccupied nodes is

P-captured:

if S is empty, or
for each opponent-move to m in S

- $S - m$ is P-dominated, and
- filling $S - m$ with P-stones makes m dead

P-dominated:

if S is empty, or
there is some P-move to m in S so that

- $S - m$ is P-captured