A Handicap Hex Strategy

Philip Henderson

Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada

Joint work with Broderick Arneson and Prof. Ryan Hayward
Hex Basics

Rules

- Two players alternate turns playing on any empty cell
- Stones are permanent (no moving or capturing)
- Goal is to connect your two sides of the board
Hex Basics

Theoretical Properties

- An extra stone of your color is never a disadvantage
- Hex cannot end in a draw
- First-player win: strategy-stealing argument
- PSPACE-complete to determine winner in arbitrary position
Motivation

- Know only that there exists a winning first-player strategy
- How many stones do we need to place initially to guarantee a win, and where should these handicap stones be placed?
- Claude Berge would give three stone handicaps on the 11×11 board
On irregular Hex boards, player traversing shorter distance can win even as second-player using a simple pairing strategy.

Idea: use handicap stones to essentially reduce a regular Hex board to an irregular one.
Using graph-theoretic properties, can determine stones that can be added to Hex positions without changing its value

Two types of fill-in: dead cells and captured cells
Dead Cells

- A cell is dead if it is not on any minimal winning path (for either player)
- Dead cells can be filled-in with stones of either colour
Captured Cells

- A set of cells S is P-captured if player P has a second-player strategy to make all \overline{P}-claimed S-cells dead.
- P-captured sets of cells can be filled-in with P-coloured stones.
Have identified a new type of inferior cell: permanently inferior cells

- Adds a single stone for one particular player \(P \)
- Unlike fill-in, the strategy set is larger than the filled-in set
If \overline{P} moves first in pattern, claim \overline{P} must play at shaded cell

Any other move allows P to capture all four cells
If \overline{P} plays at shaded cell, dotted cell is dead
If P plays first, captures all four cells
In all cases, P can claim the dotted cell
Can assign P the dotted cell without changing position’s value
Permanently Inferior Cell Patterns

- All three permanently inferior patterns
Placement of stones begins on second row, main diagonal
Stones placed every 6 spaces until last stone is at most
distance four from the edge
On an $n \times n$ Hex board, this requires $\left\lceil \frac{n+1}{6} \right\rceil$ stones
Handicap Reduction (1)

- Capture cells below handicap stones
Apply permanently inferior cell patterns next
Fill-in remaining gaps via dead and/or captured
Handicap Strategy

- Essentially reduced to $n - 1 \times n$ board, so proven existence of winning strategy
- Can easily make strategy explicit by enforcing inferior cell strategies
Summary

- Identified new form of inferior cell: permanently inferior cells
- Developed efficient and explicit handicap strategy for $n \times n$ Hex

Open Questions:

- Are there more permanently inferior cell patterns?
- Can the number of handicap stones be further reduced while maintaining an explicit strategy?
- Can the number of handicap stones be reduced if we only desire an existence proof (while still specifying initial stone placement)?
Thanks to:

- NSERC and iCORE for funding support
- Michael Johanson and Morgan Kan for helpful conversations