HEXBOTS POST ALPHAAGO
HAYWARD PAWLEWICZ GAO YOUNG WENINGER

hayward@ualberta.ca

computing UAlberta

2017 oct 2
THANK YOU

- invitation Yngi, Magnus
- solving 10×10 Hex joint with Jakub Pawlewicz
- builds on work with B Arneson, P Henderson
- machine Martin Müller
- photo courtesy MIT Museum, MIT, Cambridge MA
- Natural Sciences and Engineering Research Council of Canada
ALPHAGO: 2015 - 2017

https://www.youtube.com/watch?v=l-GsfyVCBu0&t=77m40s Mar 2016
https://www.youtube.com/watch?v=OCEvCII1zo0&t=1m23s Mar 2017
1. HEX
2. KNOWLEDGE
3. SEARCH
4. 10x10
5. POST ALPHAGO
1942 HEX

RULES

- 2 players, alternate moves
- win: connect your two sides
1942 HEX

RULES

- 2 players, alternate moves
- win: connect your two sides
N x N Hex: 1st-Player Win

Proof

- lemma: extra X-cell ok for player X
- lemma: no draws
- suppose P2 has win strategy S2
- then P1 can move anywhere, forget move, and follow S2
- thus P1 has win strategy, contradiction □
NO-DRAW
NO-DRAW
n x n+1 Hex: longer-side win

Hayward@ualberta.ca

Hexbots post AlphaGo
N x N+1 Hex: longer-side win
1951 Shannon Machine
1951 Shannon Machine

- play on any graph
- two marked vertices
- black move: ‘short’ any vertex (make nbrs clique)
- white move: ‘cut’ any vertex (delete)
- black wins iff two marked vertices are shorted (connected)

- generalizes Hex
1951 Shannon machine
1951 Shannon Machine
1951 Shannon machine
PROVABLY HARD

- 1975 Even & Tarjan
 Shannon v-switching: PS-c
- 1981 Stefan Reisch
 Hex: PS-c
- 2000 Clay Math Inst
 P vs NP: $1,000,000
HUMANS

SOLVED OPENINGS

<table>
<thead>
<tr>
<th>Year</th>
<th>Player</th>
<th>Board Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Yang</td>
<td>17/49 7x7</td>
</tr>
<tr>
<td>2002</td>
<td>Yang</td>
<td>8x8</td>
</tr>
<tr>
<td>2003</td>
<td>Yang</td>
<td>9x9</td>
</tr>
<tr>
<td>2004</td>
<td>Noshita</td>
<td>7x7</td>
</tr>
<tr>
<td>2005</td>
<td>Noshita</td>
<td>8x8</td>
</tr>
<tr>
<td>2006</td>
<td>Mishima</td>
<td>8x8</td>
</tr>
</tbody>
</table>
SOLVED OPENINGS

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Game Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995</td>
<td>Enderton</td>
<td>6x6</td>
</tr>
<tr>
<td>2000</td>
<td>van Rijswijck</td>
<td>6x6</td>
</tr>
<tr>
<td>2003</td>
<td>H Bjö Joh Kan Po vRij</td>
<td>5d 7x7</td>
</tr>
<tr>
<td>2007</td>
<td>Rasmussen et al.</td>
<td>7x7</td>
</tr>
<tr>
<td>2009</td>
<td>Arneson H Henderson</td>
<td>4d 8x8</td>
</tr>
<tr>
<td>2010</td>
<td>A H H</td>
<td>25d some 9x9</td>
</tr>
<tr>
<td>2012</td>
<td>Pawlewicz H</td>
<td>110d x 24 thread 9x9</td>
</tr>
<tr>
<td>2013</td>
<td>Pawlewicz H</td>
<td>63d x 24 thread centre 10x10</td>
</tr>
<tr>
<td>COMPUTERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hex Knowledge Search

Shannon Machine

Provably Hard

Humans

Computers

Post AlphaGo

Hayward@ualberta.ca

Hexbots Post AlphaGo
<table>
<thead>
<tr>
<th>HEX</th>
<th>PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNOWLEDGE</td>
<td>SHANNON MACHINE</td>
</tr>
<tr>
<td>SEARCH</td>
<td>PROVABLY HARD</td>
</tr>
<tr>
<td>10x10</td>
<td>HUMANS</td>
</tr>
</tbody>
</table>

COMPUTERS

hexbots post alphago

hayward@ualberta.ca
COMPUTERS
COMPUTERS

HEX
KNOWLEDGE
SEARCH
10x10
POST ALPHAGO

PROPERTIES
SHANNON MACHINE
PROVABLY HARD
HUMANS
COMPUTERS

hayward@ualberta.ca

HEXBOTS POST ALPHAGO
COMPUTERS
COMPUTERS
COMPUTERS
virtual connections: combining rules, mustplay
inferior cells: dead, captured, etc.
A VIRTUAL CONNECTION
A VIRTUAL CONNECTION
COMBINING RULE: AND (FULL)
COMBINING RULE: AND (SEMI)
COMBINING RULE: AND (SEMI)
COMBINING RULE: AND (SEMI)
COMBINING RULE: OR
COMBINING RULE: OR
COMBINING RULE: OR
COMBINING RULE: OR
WHERE MUST WHITE PLAY?
WHERE MUST WHITE PLAY?
WHERE MUST WHITE PLAY?
WHERE MUST WHITE PLAY?
DEAD
BLACK-DOMINATED (DOT SUPERIOR)
BLACK-CAPTURED
BLACK-DOMINATED (DOT SUPERIOR)
BLACK-_CAPTURE-REVERSIBLE (TO WHITE DOT)
BLACK FILL DECOMPOSITION
STAR DECOMPOSITION
BLACK STAR DECOMP DOMINATION
and/or combining rules + capture
PROOF NUMBER SEARCH

NEGAMAX P,D VALUES

3,5

1,4

2,3

2,4

1,3

1,2

1,2

2,2

1,3

1,2,1,1,1,1,1,1,4

1,1,1,1,1,1,3

1,2

1,1,1,1,1,1,1,1

1,1,1,1,1,1,1,1

1,1,1,1,1,1,1,1

1,1,1,1,1,1,1,1

1,1,1,1,1,1,1,1

1,1,1,1,1,1,1,1
PROOF NUMBER SEARCH

```
2,5
/   \
1,4   2,2
|     |
|     |
|     |
1,3 1,1 1,1 1,1 1,1 1,2

1,3
1,1 1,1 1,1 1,1 1,1 1,1 1,4 1,1 1,1 1,1 1,1 1,3

1,2
1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1
```

Hexbots Post AlphaGo

Hayward@ualberta.ca
PROOF NUMBER SEARCH

```
3,4
  /   \\  \\
1,4   1,3   2,4
 |
1,3
 |
1,2
 |
1,1
```

```
1,4
 |
1,3
 |
1,2
 |
1,1
```

```
1,3
 |
1,2
 |
1,1
```

```
1,1
```

```
1,1
```

Hayward@ualberta.ca Hexbots Post Alphago
F-DFPNS

- PNS Allis et al
F-DFPNS

- PNS Allis et al
- DFPNS Nagai
F-DFPNS

- PNS Allis et al
- DFPNS Nagai
- DFPNS in Hex?
F-DFPNS

- PNS Allis et al
- DFPNS Nagai
- DFPNS in Hex ?
- ...requires non-incremental H-search :(
F-DFPNS

- PNS Allis et al
- DFPNS Nagai
- DFPNS in Hex ?
- ...requires non-incremental H-search :(
- ...uniform branching factor :(
F-DFPNS

- PNS Allis et al
- DFPNS Nagai
- DFPNS in Hex?
- ... requires non-incremental H-search :(
- ... uniform branching factor :(
- idea: move ordering + DFPNS = F-DFPNS
F-DFPNS (1)

- expand node
- consider first $b + \left\lceil f \times 6 \right\rceil = 4$ (of 6) live children
F-DFPNS (2)

- discover move 3 loses
- consider first $b + \lceil f \times 5 \rceil = 4$ (of 5) live children
• discover move 5 loses
• consider first \(b + \lceil f \times 4 \rceil = 3 \) (of 4) live children
F-DFPNS (4)

- discover move 2 wins, so ...
- ... root solved without exploring 6th move
SOLVING 10x10

- stronger VC computations
- scalable parallel DFPN S
Pawlewicz: stronger VC computations

- faster and/or-rule VC computation
- limit form of new VCs, so never redundant
- find fewer VCs, but solve 2 to 10 times faster
EXAMPLE: VCS TO SIDE
EXAMPLE: SEMIS
EXAMPLE: SEMIS
EXAMPLE: SEMIS
EXAMPLE: SEMIS
GREEDY UNION SEMIS TO GET FULL
BLOCK CELL TO GET ANOTHER VC
Pawlewicz: scalable parallel DFPNS

- Parallel PNS: keep tree in memory? e.g. I-Chen Wu connect6
- Hex: leaf computations fast, so tree too big
- How to assign jobs to processors?
 - Jobs too long: computation redundant
 - Jobs too short: too much client/server traffic
- Solution: MaxWorkPerJob
SP DFPN S features

- $1+\varepsilon$ variant of DFPN
- Advanced TT resolution: upon collision, search next k (say 4) cells for empty location; if none found, overwrite location with smallest work job
- Once node computation assigned to leaf, use virtual win/loss so new threads go elsewhere
- ... so compute virtual (dis)proof numbers
- Shared TT: many-read / 1-write locks
- Tune MaxWorkPerJob
- For Hex: use Focussed DFPN S
SP DFPN S PERFORMANCE

- speedup test: 8 hardest 8x8 openings, 8 11x11 positions
- speedup performance: 11.8 on 16 threads (.74)
- solved all 9x9 openings
- solved centre 10x10 opening
SP DFPN S PERFORMANCE
SP DFPN S PERFORMANCE

Pawlewicz: stronger VC engine
Pawlewicz: SPDFPNS

hexbots post alphago

hayward@ualberta.ca
SP DFPN S Performance

<table>
<thead>
<tr>
<th>opening</th>
<th>#threads</th>
<th>time</th>
<th>winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>a2</td>
<td>8/24</td>
<td>68d09:40:18</td>
<td>black</td>
</tr>
<tr>
<td>a3</td>
<td>8</td>
<td>80d08:37:34</td>
<td>white</td>
</tr>
<tr>
<td>a4</td>
<td>8</td>
<td>33d14:06:03</td>
<td>black</td>
</tr>
<tr>
<td>a5</td>
<td>8</td>
<td>65d04:14:52</td>
<td>black</td>
</tr>
<tr>
<td>a6</td>
<td>24</td>
<td>110d14:35:06</td>
<td>black</td>
</tr>
<tr>
<td>a7</td>
<td>24</td>
<td>4d08:56:03</td>
<td>white</td>
</tr>
<tr>
<td>a8</td>
<td>24</td>
<td>6d14:21:30</td>
<td>black</td>
</tr>
</tbody>
</table>
SP DFPN S Performance

<table>
<thead>
<tr>
<th>opening</th>
<th>#threads</th>
<th>time</th>
<th>winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>b2</td>
<td>8</td>
<td>53d15:18:21</td>
<td>black</td>
</tr>
<tr>
<td>b4</td>
<td>8</td>
<td>29d23:53:14</td>
<td>black</td>
</tr>
<tr>
<td>b6</td>
<td>8</td>
<td>1d21:52:28</td>
<td>black</td>
</tr>
<tr>
<td>b7</td>
<td>8</td>
<td>4d17:19:13</td>
<td>black</td>
</tr>
<tr>
<td>c2</td>
<td>24</td>
<td>1d08:42:57</td>
<td>black</td>
</tr>
<tr>
<td>i1</td>
<td>24</td>
<td>6d00:51:25</td>
<td>black</td>
</tr>
<tr>
<td>10x10:f5</td>
<td>24</td>
<td>63d20:44:30</td>
<td>black</td>
</tr>
</tbody>
</table>
How Long Until 11x11?

<table>
<thead>
<tr>
<th>Size</th>
<th>States (approx)</th>
<th>Center Cell: Solver Fn Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2</td>
<td>9.0 e 0</td>
<td>0</td>
</tr>
<tr>
<td>3x3</td>
<td>5.5 e 1</td>
<td>0</td>
</tr>
<tr>
<td>4x4</td>
<td>7.6 e 5</td>
<td>0</td>
</tr>
<tr>
<td>5x5</td>
<td>4.0 e 9</td>
<td>0</td>
</tr>
<tr>
<td>6x6</td>
<td>4.0 e 14</td>
<td>2</td>
</tr>
<tr>
<td>7x7</td>
<td>1.5 e 20</td>
<td>68</td>
</tr>
<tr>
<td>8x8</td>
<td>1.0 e 27</td>
<td>19 554</td>
</tr>
<tr>
<td>9x9</td>
<td>2.7 e 34</td>
<td>912 352</td>
</tr>
<tr>
<td>10x10</td>
<td>1.2 e 43</td>
<td>5 821 097 789</td>
</tr>
<tr>
<td>11x11</td>
<td>2.2 e 52</td>
<td>???</td>
</tr>
</tbody>
</table>
UAlbertaconnection

- Martin Müller, Rich Sutton: David Silver
- Martin Müller, Ryan Hayward: Aja Huang
- Csaba Szepesvari
- Michael Bowling
http://webdocs.cs.ualberta.ca/~hayward/670gga/jem/go.html

computer go

https://gogameguru.com/i/2016/01/Fan-Hui-vs-AlphaGo.jpg AG-FH 5-0

https://www.youtube.com/watch?v=l-GsfyVCBu0&t=77m40s shoulder hit

https://www.youtube.com/watch?v=0CevCII1zo0&t=1m23s Ke Jie moment

https://webdocs.cs.ualberta.ca/~hayward/talks/hex.deepQ.pdf

invitation Yngi, Magnus
solving 10×10 Hex joint with Jakub Pawlewicz
builds on work with B Arneson, P Henderson
machine Martin Müller
photo courtesy MIT Museum, MIT, Cambridge MA
Natural Sciences and Engineering Research Council of Canada