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Abstract. We give the story behind one examplar of the work of VašekChvátal, namely his
conception of the class of perfectly orderable graphs.
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I cannot hope in only a few pages to survey all, or most, or even a significant
portion, of the many scholarly achievements of Vašek Chvátal. Instead, I present
here the story behind one exemplar of his work, the story of perfectly orderable
graphs.

The main part of this story takes place in 1981 around the time of Chvátal’s
35th birthday; the origins go back further. In the 1960s, the development of the
silicon-chip computer had many scientists thinking about two fundamental issues:
measuring algorithm efficiency, and measuring problem hardness. Around the time
of his 25th birthday, Chvátal was working on the latter issue. In particular, he was
thinking about Jack Edmonds’ 1965 paper on the matching polytope1 of a graph
[12]. Ever since Dantzig developed his efficient simplex algorithm [10], there has
been interest in knowing when the fractional relaxation of an integer polytope is
equal to the polytope; Edmonds had just shown that for any matching polytope,
adding the “blossom inequality”2 cutting planes to the fractional relaxation yields
the original polytope.

Chvátal realized that the “hardness” of an integer program could be measured
in terms of a cutting plane metric defined on the program’s associated integer poly-
tope. In his paper “On a hierarchy of Edmonds polytopes” [7] Chvátal showed that
any integer polytope can be obtained from its fractional relaxation by iterating the
following step a finite number of times; the cutting planes described in this step are
now called Chvátal–Gomory cutting planes.

To the system of integer inequalites Ax ≤ b defining the current polytope,
add all inequalities of the form (yT A)x ≤ �yT b�, where yT is a non-negative
row vector such that (yT A) is integral.

1 A matching in a graph is a set of pairwise nonadjacent edges. The matching polytope of a
graph, so-called because it is the convex hull of the characteristic edge vectors of the graph’s
matchings, is the integer polytope defined by Ax ≤ 1, x ≥ 0, where each row of A corresponds
to the set of edges incident with a particular vertex.
2 The blossom inequalities are as follows: for every set of edges between an odd-sized set of
vertices and all remaining vertices, the sum over the set of the edge weights is at least 1.
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Chvátal’s polytope hardness metric is simply the number of iterations required
before the fractional relaxation equals the original polytope; this number is now
called the Chvátal rank of the polytope. For example, the Chvátal rank of a poly-
tope whose fractional relaxation has only integral vertices is 0. As another example,
since blossom inequalities are Chvátal-Gomory cuts, the Chvátal rank of a matching
polytope is at most 1.

As Chvátal was writing his polytope hierarchy paper, the graph theory world was
buzzing over the latest news on perfect graphs3: László Lovász had proved Claude
Berge’s “weak” perfect graph conjecture [18, 19]. Since the early 1960s Berge had
been promoting the study of perfect graphs via his “weak” and “strong” conjectures4

[1–3]; Lovász’s result was seen as a breakthrough towards resolving the strong con-
jecture5. Chvátal and Lovász were among the invitees to the seminar on hypergraphs
organized by Berge in the summer of 1972 at Ohio State University; around this
time, Chvátal starting working on perfect graphs.

Chvátal soon discovered an unexpected relationship between perfect graphs
and “easy” polytopes. He had long been interested in the problem of determining
the stability number6 of a graph. The usual integer program formulation of this
problem is

max 1
T
x such that Ax ≤ 1 , x ≥ 0 ,

where A is the clique-vertex matrix7 of the graph. This formulation led Chvátal to
wonder when, for an arbitrary 0–1 matrix A, the polytope of the system Ax ≤ 1,
x ≥ 0 is “easy”, namely has Chvátal rank 0. In his paper “On certain polytopes
associated with graphs” [8] he answered this question: for a 0–1 matrix A in a certain
standard form8, A has Chvátal rank 0 if and only if A is the clique-vertex matrix of
a perfect graph.

Since linear programs9 can be solved in polynomial time, it follows that, for
perfect graphs with a polynomially bounded number of maximal cliques, the sta-
bility number can be found in polynomial time. A few years after Chvátal’s graph
polytope paper appeared, Grötschel, Lovász, and Schrijver found polynomial time
ellipsoid-like algorithms for determining the chromatic number of arbitrary perfect
graphs [14, 15].

3 A graph is perfect if, for every induced subgraph, its chromatic number equals its clique
size.
4 The weak conjecture: a graph is perfect if and only if its complement is perfect. The strong
conjecture: a graph is perfect if and only if neither the graph nor its complement contains an
induced odd cycle with at least five vertices.
5 The strong conjecture was finally confirmed in 2002 by Chudnovsky et al. [5].
6 The stability number of a graph is the size of a smallest set of pairwise non-adjacent vertices.
7 The clique-vertex matrix of a graph is the 0–1 matrix whose rows index the maximal cliques
and whose columns index the vertices.
8 The matrix is in standard form if no row dominates another. A row dominates another
if for each index, its component is at least as large as the corresponding component of the
other.
9 See Chvátal’s text Linear Programming [6] for a primer on linear programming.
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Many of these results were fresh in Chvátal’s mind in the summer of 1981 when,
at the invitation of Claudio Lucchesi, he was in the midst of presenting a (presumably
5 day) series of two-hour talks on combinatorial optimization at the University of
Campinas. Campinas is not far from São Paulo and so, lured by the siren song of
the big city, Chvátal soon established a daily routine: 10:00 to noon, lecture; noon
to 2:00, lunch and espresso; 14:00 to 16:00, bus to São Paulo; 22:00 to midnight,
bus back to Campinas.

On one of the return trips, while staring out the darkened bus at the moonlit
Brazilian landscape, Chvátal found himself thinking about graph colouring. While
graph colouring is NP-complete in general [17], it can be solved in polynomial
time for many classes of graphs. In one of the Campinas lectures Chvátal had
reviewed why colouring is especially easy for three well known classes of perfect
graphs.

Consider for example chordal graphs10. By a theorem of Dirac [11], every chordal
graph has a simplicial vertex11; as observed by Fulkerson and Gross [13], it follows
that chordal graphs are characterized by the existence of a linear vertex order in
which each vertex is simplicial with respect to the vertices up to that point in the
order. Now it follows easily that applying a certain greedy colouring algorithm12 to
such a vertex order yields a minimum colouring of any chordal graph.

Comparability graphs13 and complements of chordal graphs also have this prop-
erty: it is easy to find a linear vertex order for which the greedy algorithm yields a
minimum colouring.

As the bus rolled towards Campinas, Chvátal wondered: which graphs allow
such a vertex order? It did not take long to see that the answer is “all graphs”, so
this question was not so interesting.

Chvátal next considered the corresponding “induced subgraph” version of the
question: which graphs allow a perfect order, namely a linear vertex order so that,
for every vertex induced subgraph, the greedy colouring of the subgraph (using the
corresponding induced linear order) yields a minimum colouring?

This question was more interesting. Chvátal realized that, with respect to a linear
vertex order, one “obstruction” to a perfect order—an ordered induced subgraph
that can prevent the greedy algorithm from yielding a minimum colouring—is a
“bad P4”, namely an induced path with four vertices (say abcd) such that each end
vertex precedes its neighbouring path vertex in the order (so a precedes b, and d

precedes c). He suspected that this was the only obstruction and, when he next had
access to daylight, pencil, and paper, he proved it. Thus Chvátal had a definition
(a graph is perfectly orderable if some linear vertex order is a perfect order) and
a theorem (a graph is perfectly orderable if and only if some linear vertex order
induces no bad P4).

10 A graph is chordal if every cycle with four or more vertices has a chord. Equivalently, a
graph is chordal if it has no induced cycle with four or more vertices.

11 A vertex is simplicial if its neighbours induce a clique.
12 The algorithm is as follows. Use positive integers as colours; assign the first vertex colour
1; assign each subsequent vertex the smallest colour not yet assigned to any neighbour.

13 A graph is a comparability graph if it admits a transitive edge orientation.
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The following week, in Rio de Janeiro at the invitation of Jayme Szwarcfiter, it
was on one of Rio’s famous beaches that Chvátal finished writing “Perfectly Ordered
Graphs” [9]. Three years later the paper appeared in the volume Topics on Perfect
Graphs [4] edited by Chvátal and Berge.

Of course, the story of perfectly orderable graphs continues. Since Chvátal’s
seminal paper appeared in 1984, almost 100 papers on perfectly orderable graphs
have been published. For a recent survey, see the chapter by Chı́nh Hoáng [16]
in the volume Perfect Graphs edited by Jorge Ramírez-Alfonsín and Bruce Reed
[20].
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