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ABSTRACT

When a graph is drawn in the plane, the resulting drawing may have
pairs of crossing arcs, called crossings. A Hamilton cycle of a graph is a
cycle that visits every vertex. A drawing in the rectilinear plane is a
drawing all of whose arcs are straight line segments. We consider the
problem of determining ¢)(n) and $(n), the maximum number of crossing-free
Hamilton cycles (cfhc’s) of any drawing of K (the complete graph on n
vertices) in the Euclidean and rectilinear planes respectively.

We present a survey of all papers (some not in the open literature) on
this very recent problem. Also, for the first time several different
generalized drawings, or constructions, of Kn are collected together. Some
of the drawings have never before appeared in the open literature, e.g. David
Singer’s rectilinear drawing of KlU with only 62 crossings. For small n, the
number of cfhc’s of these constructions of Kn are counted with a computer
program. Lower bounds for q)(n) and $(n) for small n are consequently
established.

Unfortunately, no new exact values of d)(n) or a;(n) are found.
However, by developing a recursive geometric counting argument due to
Selim Akl, we improve the best known lower bound for (-5(n) from
(asymptotically) ¢ * 2.270719168" to k * 3.191847754", where c and k are
constants. A feature of our technique is that we are able to use
computer-generated data in our counting argument. In fact, our exposition is
such that with access to greater computer resources, our lower bound for

Cb(n) could be easily improved.
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1. THE OPTIMAL CROSSING-FREE HAMILTON CYCLE PROBLEM

1.1 Introduction

In this chapter we define and survey the optimal crossing-free
Hamilton cycle problem, i.e. the problem of determining the maximum
number of crossing-free Hamilton cycles of any planar drawing of Kn, the
complete graph on n vertices.

The first section consists of definitions. Those readers familiar with
graph theory can skip most of the first page. Towards the end of the
section are a few comments concerning the uniformity of definitions in the
literature. The second section is a survey of the optimal cfhc problem. As
this problem is related to the crossing number problem, i.e. the problem of
determining the minimum number of crossings of any planar drawing of Kn’

some references to the crossing number problem are also mentioned.
1.2 Definitions

A graph G(V,E) is a nonempty set V and a possibly empty set E of
unordered pairs of not necessarily distinct elements of V. Elements of V are
called vertices of G, and elements of E (if any) are edges. Consider an
edge e = (v,w) , where v and w are vertices of G. Then e s a loop
if v=wj;else eis alink. The edge e is said to be incident with, or on,
vertices v and w; likewise v and w are each incident with, or on, the edge
e. Two edges incident with a common vertex are called adjacent; similarly,
two vertices on a common edge are adjacent (i.e, two vertices v and w of
graph G are adjacent if and only if there is an edge (v,w) of G.) If there
are distinct vertices v and w of G such that there is more than one edge
(v,w), then G is said to have multiple edges. A graph with no loops or

multiple edges is said to be simple. The complete graph on n vertices, Kn ,



is the simple graph with an edge on every pair of distinct vertices. Note
that Kn has (2) edges. A cycle of a graph G is a sequence of vertices
(Vl, Voy o o ,vk) where vertices corresponding to distinct indices are
distinct, and where (Vi’ Vj) is an edge of G, for 0 < j < k , as is
(Vl, vk). A Hamilton cycle of a graph G is a cycle that includes all
vertices of G. Not all graphs have cycles (for instance, trees have no
cycles, and frogs have no ears).

An embedding of a graph G in a surface S is a mapping of the
vertices of G to distinct points of S, called nodes, and the edges of G to
disjoint open smooth curves of S, called arcs, such that:

1) no arc contains a node;

2) the arc corresponding to an edge (v,w) joins the nodes corresponding to
the vertices v and w.

Note that in an embedding, all arcs are disjoint; that is, no two arcs
intersect. Also note that, with respect to a given surface, it may not be
possible to embed certain graphs. Consider, for example, Kuratowski‘s
classic result that K5 cannot be embedded in the Euclidean plane. See
[BM] for an introduction to the theory of graphs.

A drawing of a graph is defined exactly as is an embedding, except
that it is not required that the edges of G be mapped to disjoint arcs.
Again, images of vertices are called nodes, and images of edges are called
arcs. An arc and a node of a drawing D of a graph G are incident if and
only if their respective pre-images in G are incident; similarly, two arcs
(respectively nodes) of a drawing D of a graph G are adjacent if and only if
their pre-images are adjacent in G.

A drawing is good if:

3) adjacent arcs do not intersect (in the surface S, of course);

4) any two arcs intersect in at most one point of S;



5) no three arcs intersect in a common point of S;

6) any two arcs that intersect are not tangent at their point of
intersection.

A drawing D of a graph G is defined as bad not if it is drawn by someone
else, but if it is not good. Figure 1 gives those configurations that are

prohibited by conditions 3) to 6), and shows how they can be removed.
Figure 1. Making drawings good [E]

A crossing is a set of two intersecting arcs. The responsibility of an
arc is the number of arcs with which it intersects, i.e. the total number of
crossings on that arc. The responsibility of a node is the sum of the
responsibilities of all incident arcs. The crossing number x(D(G,S)) of a
drawing D(G,S) of a graph G in a surface S is the number of crossings in D.
[We will frequently abbreviate the drawing D(G,S) as D.] The crossing number
U(G,S) of a graph G in a surface S is the minimum number of crossings of
any drawing of G in S. A drawing D(G,S) is crossing number optimal, or

x-optimal, if x(D(G,S)) = p(G,S).



y(n) is the crossing number of Kn in the Euclidean plane, i.e.
Un) =U(Kn,E), where E is the Euclidean plane. Planar drawings in which
arcs are restricted to straight line segments will be referred to as drawings
in the rectilinear plane. Let J(n) be the rectilinear crossing number, i.e.
the minimum number of crossings of any drawing of Kn in the rectilinear
plane.

Two drawings D(G,S) and D’(G,S) of a graph G in a surface S are
isomorphic if and only if there is a bijection of the nodes that preserves
both incidence and crossings of arcs. A crossing-free Hamilton cycle of a
drawing D(G,S) is the image of the edges of a Hamilton cycle of G, such
that no two of the resulting arcs intersect. The number of crossing-free
Hamilton cycles (cfhc’s) of the drawing D is cfhe(D). The maximum number
of crossing-free Hamilton cycles of all drawings of G in the surface S is
¢(G,S), also called the cfhe number of G in S. A drawing D is cfhec-optimal
if cfhe(D) = d)(G,S). d)(n) is (b(Kn,E), and $(n) is the maximum number of

cfhe’s of any drawing of Kn in the rectilinear plane.
1.2.1 Uniformity of definitions

The reader is warned that variety and imprecision abound in the
literature with respect to the definitions of drawing, crossing and good
drawing. An example of variety: Newborn and Moser refer to what we call
crossing-free Hamilton cycles as crossing-free Hamiltonian circuits. An
example of imprecision: it is common for authors to fail to distinguish
between graphs and drawings.

Geodesics in the Euclidean plane are straight line segments. Some
authors refer to the rectilinear crossing number as the geodesic crossing

number.



Although we may refer to a node as being "on" an incident arc, we
point out that arcs are open curves, and do not actually intersect incident
nodes.

Our definition of a good drawing is taken from [BW], except that
condition 6) is added from [El This is not a major inconsistency in the
literature, however, as almost all papers are concerned with optimality, and
it is easy to show that if there is a x-optimal drawing D, then there is a
good (according to both [BW] and [E]) x-optimal drawing D’, such that all
crossings of D are crossings of D”.

It is always possible to eliminate any type 6) crossings from a good
[BW] drawing to obtain a good [E] drawing without introducing any new

crossings, and without deleting any crossing-free Hamilton cycles.



1.3 A Survey
1.3.1 The optimal cfhc problem

The planar crossing-free Hamilton cycle problem for Kn was posed
only very recently by Monroe Newborn and W. O. J. Moser in 1976 [NM]
We are aware of only two other papers on this problem in the open
literature: that of Selim Akl [Al] and that of M. Ajtai, V. Chvétal,
M. Newborn and E. Szémerédi [ACNS]

Newborn and Moser set out to determine the cfhc-number of Kn, and
also ask what drawings are cfhc-optimal. They considered this problem both
in the Euclidean and rectilinear planes. They were able to solve the problem
for n = 1 to 6. By counting (with a computer program) cfhc’s of many
drawings, they also arrived at lower bounds for (b(n) and 6)(n) for
n=17,8 9. These results are given later in Table I. The possible
connection between cfhc-optimal drawings and x-optimal drawings was noted.
To obtain a lower bound for a)(n), they drew the nodes of Kn as [n/3]
concentric triangles (where [x] is the greatest integer < x), and placed any
remaining nodes in the innermost triangle. Call this drawing NMn' They
then used an inductive counting argument to find a lower bound for
cfhc(NM ), and hence the lower bound ®(n) > 0.15 * 100"/ 31 Note that
the set of drawings of E having all arcs as geodesics is a subset of the set
of all drawings of E; therefore $(n) < Pn).

Using a topological argument (essentially, one can turn in only a finite
number of directions a finite number of times in constructing a rectilinear
cfhe), they determined the upper bound $(n) £ 2% 6M"2 « [n/2]1 .

In 1979, Akl [Al] improved the lower bound of E(n) by improving the
lower bound for cfhc(NMn) . Again, a recursive construction was used. The

end result is that for sufficiently large n, d)(n) > ¢ * 2.270719168", where c



is a constant. The true purist who does not like to see theoretical problems
tainted with real world applications will likely be dismayed by the following
observation of Akl‘s: " . .. [the cfhc-optimality problem] also arises in
connection with various optimization problems in the plane, such as the
Euclidean traveling salesman problem."” Akl later improved the lower bound
slightly [A2], although the asymptotic rate of growth  remained
2.270719168".

Finally, Ajtai, Chvatal Newborn and Szémerédi [ACNS] confirmed a
conjecture of Erdos and Guy involving crossing numbers, by proving that (for

sufficiently large m), any planar drawing with n nodes and m arcs has at

least £ r; crossings, for a constant c. They then used this result to show
n

that the number of crossing-free planar subdrawings of a drawing with n
nodes is no more than 1013n. This then became an upper bound for (b(n).
Their proof was quite elegant, in that the only graph theory needed to show
that the former result implies the latter was a very simple counting
argument relating crossings, nodes and arcs. This was also the first result to

demonstrate a relationship between numbers of crossings and numbers of

cfhe s,
13.2 Crossing Number Problems

As the cfhc-optimal problem appears related to the crossing number
problem, we mention a few references on crossing number problems.
Unlike the cfhc-optimal problem, the crossing number problem has been
around for 15 years, if not longer, and there is a wealth of literature on the
subject.

A very comprehensive bibliography is given in [E]; for a survey in
the public domain, the reader is directed to the expository papers of Guy

[G3] [G4] and to the paper by Erdds and Guy [EG], brief updates of which



appear periodically in the research problems section of the American Math.
Monthly [G5] [G6]. Many recent books on graph theory mention crossings;
see [BW] and [BCLF], for example. Finally, the crossing number problem is

classified as category #361 in Brown’s Reviews of Graph Theory [Brl
1.3.3 On x-numbers and cfhc-numbers

The following tables give the cfhc-optimal and x-optimal numbers for
planar drawings of Kn’ for n up to 9 and 10 respectively. The cfhc-optimal
table, Table I, is taken from [NM], while the x-optimal table, Table II, is
from [G4], and also appears in [BW]. Note that in some cases only lower

bounds are given.
1.3.4 New Results

This paper contains several new results.
In Chapter 2 we determine lower bounds for (b(n) and (p(n) for

n =3 to 15, consequently improving Newborn and Moser’s lower bound for

¢(9) from 1228 to 1252. Compare Table I (from Newborn and Moser) with
Table VIII (from our catalogue) . The lower bounds for n = 9 to 15 are new
as of this paper.

In Chapter 3 we determine an asymptotic lower bound for E(n) by
developing a counting argument due to Selim Akl [A1l] [A2]. Our lower
bound is asymptotic to k *3.1918&775&”, where k is a constant. The
previous best lower bound for E(n) (due to AKl) was asymptotic to
c * 2.270719168“, where c is a constant. See section 1.3.2 and Chapter 3.

All of the results of our preprint [H] are contained in Chapter 3.



Table I. Results of Newborn and Moser

n 3 4 5 6 7 8 9

dm 1 3 8 29 > >339  >1228
¢ 1 3 8 29 > 399

*Table II. Crossing Numbers [G4] [BW]
n 3 4 5 6 7 8 9 10

UM 0 0 1 3 9 19 36 6loré6
pn) 0 0 1 3 9 18 36 60

* 60 < PJ10) < 63 .
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2. A CATALOGUE OF DRAWINGS
2.1 Introduction

In this chapter we present a catalogue of drawings of Kn , along with
their respective x-numbers and cfhc-numbers. The catalogue consists of
Tables III to VIII. Included are all known cfhc-optimal drawings of Kn in
the Euclidean and rectilinear planes, as well as a few general constructions
of Kn that have appeared in the literature on crossing numbers. A
back-tracking algorithm, written by Henk Meijer for Selim Akl in Pascal and
altered slightly by the author, was used to count cfhc’s. The program is
listed in the last chapter. We are indebted to Henk and Selim in that this
paper never would have been possible without the use of their program.
However, responsibility for any possible errors in the following data is ours
alone.

For a given drawing, input to the program was a list of the crossing
arc pairs. Validity checks included
i) counting cfhc’s by hand,

ii)  entering data several different ways,

iii) confirming cfhc equality of isomorphic drawings,

iv)  confirming cfhc numbers of all drawings shown in the paper by
Newborn and Moser [NM], and

v) confirming the number of cfhc’s of a (slightly) non-trivial drawing for

which the exact number of cfhc’s was calculated.
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2.2 Drawings of K, to K

3 6

All of the drawings mentioned in this section are catalogued in Table
Ill, (see the end of this section). Note that all of these drawings, as well as
some drawings catalogued in Table VI, have alpha-numeric names. The digit
in the name of such a drawing indicates the number of nodes; e.g. drawing
3A is a drawing of K3, drawing 6Q is a drawing of K6, etc.

All non-isomorphic good drawings of KB’ Ka, and K5 are included in

Figures 2, 3, and 4 [El As there are so few good drawings, it is trivial to

determine the optimal cfhc-numbers for n = 3, 4, and 5.

3A
Figure 2. Good Drawing of K3
It is not much more work to do the same for K in the rectilinear

6

plane; we now show that all non-isomorphic good rectilinear drawings of K6
appear in Figures 5 and 6 (with some drawings repeated due to isomorphism).

Let D be a good rectilinear drawing of K If D has six nodes on its

6
convex hull, then D must be isomorphic to the drawing 6Z (see Figure 6).
Suppose now that D has fewer than six convex hull nodes; then removal of
some node not on the convex hull of D leaves a good rectilinear drawing of
KS' As there are only three non-isomorphic good rectlinear drawings of KS’
namely drawings 5A, 5B and 5E, it is feasible to construct all possibly non-

isomorphic drawings of D (having fewer than six convex hull nodes) by

placing a node in each of the different interior regions of each of the three
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drawings. Thus, the set of 25 drawings 6A to 6Z (there is no drawing 6X)
of Figures 5 and 6 includes the set of all non-isomorphic good rectilinear
drawings of K6. Note that the letter in each of the labelled regions of
Figures 5 and 6 corresponds to the name given to that drawing of K6
obtained by placing a node in that region and joining the node to all five
other nodes with straight line segments. For example, drawing 6H is

obtained by placing a node in region H.

Note that of all good rectilinear drawings of K., 6A has the most

6’
cfhc’s, namely twenty-nine (see Table IIl at the end of this section ). Note
that there is no bad rectilinear drawing with a greater number of cfhe’s;
thus by exhaustive analysis we have proved that ?5(6) = 29.

Drawing 6A is the unique planar cfhc-optimal (and unique x-optimal
[G3] ) drawing of Kg » in both the rectilinear and non-rectilinear planes

[NM] . As Drawing 6A is also the drawing TS6 (see section 2.3.4), drawing

6A appears in Figure 9 as well as in Figure 5.
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4 A

0

4B

Figure 3. All Good Drawings of K 4 [E]
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SA

SC

5B

SD

Figure 4. All Good Drawings of K [E]

SE
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Figure 5. Drawings of K6:

Convex Hull 3
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Figure 6. Drawings of K

6:

Convex Hull 4, 5 and 6
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Table IIl. Drawings of K3 to K6

Drawing Responsibilities: X cfhe con.
Arc Node , hull
Ks
3A 0 .. 000 0 1 3
Ky
4A 0 .. o000 0 3 3
4B 11 1111 1 1 4
Ks
5A 11 11110 1 8 3
5B 2211 33222 3 4 4
5C 21111 33222 3 3 -
5D 322111 44444 5 2
5E 22222 44444 5 1
Ke
6A 111111 222222 3 29 3
6B,F,DJ I 221111 333331 4 24 3
6C,G,J 322111 444422 5 23 3
6E,K 22222 444440 5 20 3
6H 333111 555333 6 22 3
6M,T 33221111 6644414 7 13 4
60 33221111 6 64444 7 13 4
6P,R 43222111 755555 8 13 4
6N,U 333222111 775553 8 12 4
6S 4422222 666666 9 13 4
6Q 4333221 866664 9 12 4
6V 3333311111 7777175 10 6 5
6w 433332211 888866 11 5 5
6Y 44333322 999777 12 5 5
6Z 444333333 10 10 10... 15 1 6
Note: All drawings listed on any line are all isomorphic. Also, two

drawings listed on different lines are non-isomorphic. Note in particular that
60 is non-isomorphic to 6M (and 6T). Thus, there are 15 non-isomorphic
good rectilinear drawings of K 6
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2.3 Constructions of Kn
2.3.1 Introduction

The reader will probably appreciate that the number of non-isomorphic
good drawings of Kn increases rather quickly as n increases. Sooner or later
some technique other than brute force (i.e. simply drawing all good drawings
and counting their cfhc’s) will have to be used in the search for
cfhc-optimal drawings. One such technique is to limit the search to
drawings that seem likely to have many cfhc’s, namely drawings with few
crossings. We define a construction of Kn to be a rule for drawing Kn for
any given n. We have selected five rectilinear and two non-rectilinear
constructions for Kn in the plane. They are described below.

One drawing of each construction is included as a figure at the end of
section 2.3. However, as the catalogue includes all drawings of each
construction of Kn for n up to 13, not all drawings of the catalogue appear
as figures.

The two tables at the very end of the section record the number of

cfhe’s of the constructions of Kn for n up to 13.

2.3.2 The construction WHn

Suppose that it is a cold and miserable February, and that there are
n-1 professors living on or near the 49th parallel who decide to take a
holiday at the south pole (after all, it will be summer down south ... ).
The Winter Holiday drawing WHn of Kn is obtained by joining the n
locations mentioned above with geodesics on the globe, and then transferring
the drawing to the plane so that no new crossings are created. Note that
WHn can be drawn in the plane with straight line segments (see Figure 7) ;

hence, WHn is a rectilinear construction. Of all constructions we will give,
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WHn has by far the most crossings, namely (n;l) , and the fewest cfhc’s.
However, it is the only construction for which we have been able to

explicitly determine a closed form solution for the number of cfhe’s.

Clam:  Forn>2, cfheWH) = (a1 » 2™

Proof: A path is formed when an edge is deleted from a cycle. A
Hamilton path is a path that visits all the vertices of a graph. A
crossing-free Hamilton path (cfhp) is the image in a drawing of a Hamilton
path of a graph, such that no two of the resulting arcs cross. The
end-nodes of a cfhp are the nodes of the cfhp incident to only one arc of
the cfhp. Let cfhe(D) be the number of cfhp’s of drawing D. Let the
rectilinear planar Circle drawing Cn of Kn be the drawing constructed by
placing n nodes on the circumference of an ellipse. Note that the number
of cfhc’s of WHn is equal to the number of cfhp’s of Cn-l (remove the
south pole from WHn) .

Label the nodes of Cm from 1 to m. Let Q(m : s,t) be the number of
cfhp’s of Cm with end-nodes s and t; consider such a cfhp Z =
Q1, Vor Vs o e e Voo oy Vo t) , where s=1. Note that for
1<i<j<t, node i occurs before node j in Z (otherwise Z will have a
crossing) . [Similarly, for t < i < j < m, node j occurs before node i in
Z.] In fact, for 1 < t < m, there is exactly one cfhp (1, . . . , t) of Cm

for every pair of integers (i,j) such that 1 < i< j<t. Thus, Qm : 1,t) =
( m-z ) m'z )

t.2 A similar argument yields Q(m : s,t) = ( boso1

Finally, note that cfhp(Cm) is obtained by summing Q(m : s,t) over all
pairs (s,t), such that 1 < s < t < m . Thus we have

n-2 n-1
cfheWH ) = efip(C__ )= 2 2 Q(n-1 : s,t) =
szl t=s4+1l
n-2 n-1
303 (") = (n-1) = 2"
t-s-1
s=1 t=s+1

This completes our proof.

Note that the above was used as a check of our computer program.
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2.3.3 The construction ALMn

This construction is due to Saaty, who calls this the Alternating Linear
Model of Kn [Sal. Draw the n nodes 1 to n in order on a straight line L.
Join node i to node i+l with a straight line segment, for i = 1 to n. Join
node 1 to nodes 3 to n with semicircles drawn above L. Join node 2 to
nodes 4 to n with semicircles drawn below L. Node 3 is connected to
remaining nodes with semicirles drawn above L; node 4 with semicircles
below L; and so forth. Jensen notes that ALMn is actually rectilinear [J] :
starting with node 3, nodes are drawn alternately above and below L, each
additional node being placed increasingly further from L. The nodes can be
thought of as the peaks and troughs of an exponentially amplified sinusoid.
See Figure B. Note that as arcs in a rectilinear drawing are straight line
segments between pairs of nodes, a rectilinear drawing is completely
described once its node locations have been described. The number of

crossings of ALM_is [(n - 1)n - 3Xn% - 4n +1) / 48).
2.3.4 The Construction TSn

TSn ( Triangular Spiral ) is a rectilinear construction. The nodes are

drawn as three concentric rays of [n_LZ], [l%—l], and [g] nodes each. The

3
rays all spiral slightly in the same direction. The number of crossings is
(llna - 9Un3 + an2 + bn + c )/ 648, where a, b, and ¢ depend on the

residue of n (mod 3).

TSn is included essentially because its trilateral symmetry renders it
useful in establishing an improved lower bound for $(n). See the following
chapter, which also gives a more complete description of how to draw TSn.

See also Figures 9 to 11,
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2.3.5 The Construction I-‘TSn

This is also a rectilinear construction. To draw FTSn ( Flip Triangular
Spiral ), first draw TS,. Then take the ray containing the fewest ( i.e. [%] )
nodes, and flip it in place so that it curls in the direction opposite to the
other two rays. See Figure 12. This construction has been included because
of all constructions consisting of three concentric spiralled rays of nodes,
this construction has the fewest number of crossings, namely
( 1104 - 94n3 + an2 +bn +c )/ 648, where a, b, and ¢ depend on the

residue of n (mod 3).
2.3.6 The Construction JEn

This construction is due to Jensen, and is the last of our rectilinear
constructions. As with TSn and FTSn, JEn consists of three rays of nodes,
but in this case the rays are not spiralled. Instead, each ray is a copy of (a
flattened) ALMn. Figure 13 shows how JElU is constructed from ALM3,
ALM3, and ALMA. See [J] for a more complete description of how to draw
JEn. JEn is included because of all rectilinear constructions that have

appeared in the open literature it has the least number of crossings, namely

3 + an2 +bn+c)/ 432, where a, b, and c depend on the

( 0% - sén
residuee of n (mod 6). Jensen and Singer have independently found
constructions with fewer crossings, but these have not been published [GS]

[si] .
2.3.7 The Construction BKAn

This non-rectilinear construction is due to Blazek and Koman [BK], and

independently Guy [G2). The number of crossings is the least of all known

planar constructions, namely [ %] [nél] [n£2] [n£3] / 4 . This number is

also conjectured to be p/(n) [G4]. It has been proved that the above
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expression is equal to l/(n) for n up to 10 [G4) . See Table II.

To draw BKAn, place n nodes at the corners of a regular n-gon. Pick
any line of reference. If the slope of the line on a pair of nodes is
positive, or if the line is perpendicular to the reference line, then the nodes
are joined with a straight line segment. Otherwise, the nodes are joined by
an arc outside the n-gon. Another way to picture this is to draw the n
nodes on the equator of the sphere. Then in the former cése, the nodes are
joined by an arc in the upper hemisphere, and in the latter by an- arc in the
lower hemisphere. [Any drawing that can be drawn on the sphere can be

drawn in the plane.] See Figure 14.
2.3.8 The Construction BKBn

This second construction of Blazek and Koman [BK] was discovered
independently by Guy [G1l], Saaty [Sal, and others [G3] BKBn has the same
number of crossings as does BKAn.

Let n be even. To draw BKBn, place half of the nodes evenly on the
upper rim of a cylinder and the other half evenly on the bottom. Any pair
of nodes on the top (or bottom) disc is joined with a straight line segment,
A bottom node and a top node are joined by the shortest helix between
them. 1If necessary, the bottom disc may be rotated slightly so that there is
a unique shortest helix between any pair of upper and lower nodes. This
construction can be mapped from the cylinder onto the sphere, and hence
onto the plane. In fact, it is possible to realize this construction using
geodesics on the sphere. See Figure 15.

If n is odd, draw BKBn+1 and remove any node.

Note that for n = 3 to 7, BKAn and BKBn are identical.
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23.9 The Singer Drawing

We thank David Singer for having described (over the telephone) his
drawing of KlD with 62 crossings, and for having sent us his manuscript [Sil
This is actually a very notorious drawing. Its existence refutes a conjecture
of Guy’s [G4), and yet the drawing has never appeared in the literature.
For this reason, we are extremely grateful that Dr. Singer has allowed us to
include this drawing in our manuscript. "S-9" is an abbreviation for the
drawing obtained by removing node 9 from the Singer drawing; S-7,8 is the

Singer drawing minus nodes 7 and 8, etc.. The Singer drawing of K is

10
Figure 16.
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Figure 7. The Drawing WH7
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Figure 8. Drawings of ALM6
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Figure 13. Outline of .]ElO
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Figure 14. The Drawing BKA9
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Figure 15. The Drawing BI-(B8







cfhec

1

3

8

29

91

313
1188
4154
15527
62097
233042
918595
3803482

cfhe

20

48
112
256
576
1280
2816
6144
13312
28672

Table 1V.

TS
n

O W = O O X

20
36
65
106
159
239
341
465

WH
n

v~ O O X

15
35
70
126
210
330
495
715
1001
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Rectilinear Constructions

cfthc
1

3

8

29

91
339
1228
4490
18239
68387
275745

cfthe
1

3

8

24

73
235
778
2665
9347
33534
122574

FTS

n

O W =~ O O X

19
36
64
102
159
235
331
465

3

S = O O X

11
24
46
80
130
200
295
420
581

cfhe
1

3

8

29

91
339
1228
4720
18383
75231
306446

JE

O W - O O X

19
36
63
102
156
231
328
453
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11
12
13

Table V. Spherical (Non-Rectilinear) Constructions

18
36
60
100
150
225

- 35 .

cfhc(BKAn)

29

96

369
1403
5756
23204
99649
434689

chf c(BKBn)

29

96

399
1461
6354
24687
110162
446798
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2.4 Drawings of K7 to K13

The five drawings 7A to 7E of Table VI are all of the non-isomorphic
x-optimal drawings of K7 [EG] Note that three of these can be drawn
with straight lines (i.e. are rectilinear). The three figures at the end of this
section are the only catalogued drawings not given by any of our
constructions. They are included in the catalogue because they are
x-optimal. Erdts and Guy state that there are three non-isomorphic
Euclidean x-optimal drawings of K8’ of which none are rectilinear [EGIL
These are drawings BKAS, BKBa, and 8C, all of which have 18 crossings.
As there exist rectilinear dréwings of KB with 19 crossings, the rectilinear
crossing number of KB is 19. Three such rectilinear-optimal drawings are
catalogued in Table VI; there may exist others.

For K9, the crossing number is equal to the rectilinear crossing'
number for the last time; Guy has shown that [(n) > yin) for n > 9.
Unfortunately, there are about 400 non-isomorphic x-optimal drawings of K9
[G5] . In Table VII we have included only the 6 given by our 7 constructions
(FTS9 and JE9 are isomorphic), as well as two others that can be obtained
by deleting a pair of nodes from Singer’s drawing of KlD' Two further
drawings, which are also sub-drawings of Singer’s drawing but not x-optimal,
are included because they both contain more cfhc’s than any of the other
catalogued rectilinear drawings, and also improve Newborn and Moser’s lower
bound for 5(9) from 1228 to 1252.

Table VII includes only the 7 drawings of KlO given by our
constructions, plus the Singer drawing. Of these, the two BK drawings are
x-optimal in E. It is not known how many x-optimal drawings of KlO there
are. The catalogue also includes the Singer drawing, which is the only

known rectilinear drawing of KlO with 62 or fewer crossings. It is known

that the rectilinear crossing number of Kig is 61 or 62 [si]l [G3]1[BW]. For
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Kll to K13, our catalogue includes only those drawings given by our 7
constructions. See Tables IV and V of the previous section. The catalogue
ends at about K13 due to computer time constraints: about 20 hours of

c.p.u. time is necessary to count cfhc’s of a drawing of K For K14 and

14°
KlS’ the only drawings for which the number of cfhc’s was counted were
TS14 and TSlS‘

All drawings of this section are catalogued in Tables IV to VII. The
last table in the chapter, Table VIII, summarizes the lower bounds for (D(n)
and 5(n) that are established by drawings of our catalogue. The tables
appear after the following three figures, which are the only x-optimal
drawings of K7 or K8 not given by any of our constructions.

Note that the lower bounds for q)(n) and ®(n) for n > 9 are new as of

this paper. See Table I and Table VIII.
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Figure 18. The Drawing 7E
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Figure 19. The Drawing 8C




Drawing

7A *
B *
[[®

7E

G

BKB *
BKA *
8C
FTS,JE
5-8,10
5-8,9
TS

WH

The arc responsibilities” column gives the number of arcs with responsibilities
1 to 4; none of the above drawings have any arcs with greater responsibility.
All above rectilinear drawings
drawings are followed by *.

Drawing 7A is both BKA.I, BKB7; drawing 7C is 5-8,9,10, i.e. the Singer
Drawing 7D is TS?’ FTS7, and
TS, is

drawing with nodes 8, 9, and 10 removed.

JE..
Singer-8,6.

Table VI. Drawings of K

Arc Resp.
# with

3

= W N

2
2

# with

N N = N

wn O 0 W

Py

2

4

15

N0 O O

0N &~ N0 O

1
12
10

N v &

7 Drawing 7F is ALM.,; drawing 7G is WH
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2

Node Resp.

6665544
6665553
6655554
6665544
6555555

9 9 9 9 9 9
9 9 9 9 99
9 9 9 9 9 9
10 10 10 10 10 10
10 10 10 10 10 10
11111111 9 9

1111 111111 11

7.

and K

A I e T - B o « IR Vo A Vo IR Vo ]

FTS

RN « B o « B o « B Vo Vo B Ve ]

have three convex hull arcs.

is Singer-8,7 ;

O W0 0 WV O

11
15

18
18
18
19
19
20
20
24
35

Non-rectilinear

cfhe

96
96
92
91
87
73
48

399
369
354
339
335
331
313
235
112

8
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Table VII. Drawings of K9 and KlO
Drawing X cfhe
Kg
BKB * 36 1461
BKA * 36 1403
Singer-8 38 1252
Singer-9 38 1233
Singer-7, FTS, JE 36 1228
Singer-10 36 1218
TS 36 1188
Singer-5 36 1184
ALM 46 778
WH 70 256
K10
BKB * 60 6354
BKA * 60 5756
Singer 62 4956
JE 63 4720
FTS 64 4490
TS 65 4154
ALM 80 2665
WH 126 576

All above rectilinear drawings have three convex hull

arcs. Non-rectilinear drawings are followed by *.
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Table VIII. Lower bounds for ¢(n) and $(n) from Catalogue

lower bound

for $(n)

* %*

92
**339
1252
4956
18383
75231
306446
918595

3803482

drawing

3A
4A
5A
6A
Singer-8,9,10
Singer-8,7
Singer-8
Singer
JE
JE
JE
TS
TS

lower bound

for (b(n)

%* %

96

* %
399
1461
6354
24687
110162

446798

drawing

3A
4A
5A
6A
BKB
BKB
BKB
BKB
BKB
BKB
BKB

For Kla and KlS’ TSn was the only construction for which the

number of cfhe’s was computed.

* These numbers are cfhc-optimal [NM] ; see Table I.

** These are the same lower bounds obtained by Newborn and Moser;

see Table I.

All other lower bounds are new as of this paper.
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3. AN IMPROVED LOWER BOUND FOR (n)
3.1 Introduction

In this chapter we develop and generalize slightly the recursive
counting argument used by Selim Akl in [Al] and [A2). In the first section,
we present a more detailed description of TSn than that given in the
catalogue, as this drawing of Kn plays an integral role in our argument. In
the second section we present a summary of Akl’s techniques. The following
section shows how his arguments can be generalized. Finally, in the last
section is a refinement of our generalization.

Selim Akl counted the number of cfhc’s of TSn that have arcs only
from the outermost three nodes to the next outermost three nodes, and from
the latter set of nodes to the next outermost three nodes, etc. We improve
his result by counting the number of cfhc’s of TSn that have arcs from the
outermost three nodes to any set of three nodes up to the fifth outermost
set, and from that set of nodes anywhere up to the ninth outermost set of
three nodes, etc.

Our exposition is such that we are able to use computer generated
data in our counting argument. In fact, with access to greater computer

resources, our lower bound for Eﬁ(n) could be easily improved.
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3.2 A Description of TSn
3.2.1 Definition of TSn

TSn is a mnemonic for "triangular spiral on n nodes". To draw TS,

begin with [n;Z}

concentric, similar, symmetrically parallel triangles
(hereafter referred to as template triangles, or tt’s). [We call two similar
concentric triangles symmetrically parallel if and only if the outer triangle
can be mapped onto the inner triangle without rotation.] Note that the
nodes of the tt’s lie on three rays with the same origin. In order to avoid
having any three nodes collinear (as this is a rectilinear construction, the
above would violate the definition of a drawing), gently spiral the three rays
clockwise. That is, rotate the outermost tt clockwise by some very small
but positive angle @, rotate the next outermost tt clockwise an even smaller
angle @', etc. Label the nodes of the innermost tt in clockwise order as
nodes 1, 2, 3 of TSn. Complete the labelling so that corresponding nodes of
adjacent tt’s have labels that differ by three. Note that only n of the
3 [n%z] nodes of the tt’s are nodes of TSn. To complete the drawing of
TS, draw straight line segments between all (g) pairs of nodes.

to TS

The drawings TS are included in Figures 9 to 11 of the

3 9

previous chapter.
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3.2.2 Crossings of TSn

We relabel the nodes in order to facilitate listing the crossings (i.e.

n+1
3

three rays of TSn will be called «, ﬁand ¥, in clockwise order with the

crossing arc pairs) of TSn. Let a = [Q_§_2_], b=1[ ], and ¢ = [%] . The

first containing the most nodes, and the last the fewest. More precisely, we

relabel
nodes 1, 4 ..., 3a-2 as °<l,0<2,...,0<a
nodes 2,5 ..., 3b-1 as ﬁl,gz,...,ﬁb

nodes 3, 6, ..., 3c as Xl’ XZ’ C ey Kc'

The following is the list of all crossings of TSn. We point out that
the reason for gently spiralling the tt’s was to effect exactly the following
set of crossings. The set of crossings will obviously be different if the

spiralling is exaggerated. See Figures 9 to 11 of the previous chapter.

1) (°<i,°<k)(0<j,0(m) 1<i<j<k<m¢a
2) (Fi,Pk)((;j,ﬁm) 1<i<j<k<m¢<hb
3) (Xi,Xk)(Kj,Km) 1<i<j<k<m<ec
4) (ui,Pk)(dj,@m) 1<¢i<j<a 1<k<m¢hb
5) (Fi,xk)(ﬁj,‘(m) 1<i<j<hb l1<k<m¢<ec
6) (Xi’“k)(b'j’“m) 1<i<j<e 1<k<m¢<a
7) (Cxi,o(k)(t’(j,[im) 1<i<j<k<a 1<m¢<hb
8) (ﬁi,(&k)(gj,xm) 1<i<j<k<b l1<{m¢«<c
9) (xi,b’k)(a'j,o(m) 1<i<j<k<e l1<{m¢<a
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Case 1): The number of crossings of this type is the number of distinct

four-tuples of nodes O(i, namely (Z) if a> 4, else 0.

Case 4): There is a crossing of this type for every distinct pair of nodes

O(i, O(j coupled with any distinct pair of nodes Pk’ ﬁm' The number of such

crossings is (;) (g) if a and b are both > 2, else O.

Case 7): Every triple of nodes °(i ‘Xj X, together with a node (Bm gives

such a crossing, namely b (;) if a> 3, else 0.

The total number of crossings of TSn is therefore

) + O b
e e O s OO
+ (;) b + (g) c + (§) a

where we define (’;) to be 0 if y > x. This gives

«Ts ) - ln®: 9on’+ 225n2. 1621
n 648 ,
11n%- 900+ 249n2- 290n + 120 .
648 » an
11n%- 9on’s 249n2. 250n 4+ 48

648

for n congruent to 0, 1 and 2 (mod 3) respectively.
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3.3 Akl’s Counting Argument

In [Al] Akl computes a lower bound for .CB(n). We now present the
essential details of his work, following his notation as closely as possible.

A lower bound for E(n) is obtained by counting all cfhc’s of the
rectilinear drawing Dn' We paraphrase Akl‘’s description of Dn ¢ n nodes
are placed in the plane to form [n/3] concentric triangles, and the nodes of
each triangle are then connected to those of the next smaller one by all
possible arcs [Al] .

Define a sub-drawing of a drawing D to be a drawing obtained by
removing some arcs and possibly nodes from D. We will alter Akl’s

definition slightly by defining Dn as a sub-drawing of TSn.
3.3.1 Recursive definition of Dn

Nodes of Dn are placed and numbered as for TSn.

0) Define Da, DS’ D6 to be TSa, TSS’ TSs.

We now define D, in terms of D forn > 7:

n-3’

1) Dn contains all arcs of D Also, all pairs of nodes of

n-3°

{ n, n-l, « .., n5} are joined with arcs.

Thus, the following is all arcs of Dn:

all node pairs of { n, n-1, . . ., n-5}

all node pairs of { n-3, n-4, ..., n-8 }

all node pairs of { n-3t, n-3t-1, . . ., n-3t-5 } s Wwhere t = [n_g_é
plus all node pairs of {1, 2,...,q}, where q = 4, 5, and 6 for n

congruent to 4, 5, and 6 respectively.
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3.3.2 The number of cfhe’s of Dn

For non-negative i, define an i-cfhc of a rectilinear drawing to be a
cfhe that includes exactly i of the convex hull arcs of the drawing.
Figure 20 shows one way in which the convex hull arc of a l-cfhc of Dn-3
can be removed to construct a 2-cfhc of Dn‘

Note that every l-cfhc of Dn-3 yields 5 2-cfhc’s of Dn’ and that
every 2-cfhc yields 4 l-cfhc’s and 10 2-cfhc’s. See Figures 21 to 23.

Let d? be the number of i-cfhc’s of Dn' Note that for n > 6, Dn
has no O-cfhe’s or 3-cfhe’s. Thus for n > 6, cfhe® ) = d + d?. The

n n
above gives the following system of equations for n > 6:

1 2
dn = 4 dn-3
(1)
2 1 2
dn = 5 dn-3 + 10 dn-3

Once dé and dg are calculated (this is easily done by simply drawing all 29

cfhe’s of Ds), a closed form expression for cfhc(Dn) can be determined from

1 2

(1) for n congruent to 0 (mod 3). Similarly, counting da and d4 from the

three cfhc’s of D4 leads to a closed form expression for cfhc(Dn) for n
1 2 .
5 and d5 from the 8 cfhc’s of D5

gives cfhc(Dn) for n congruent to 2 (mod 3). In all three cases, for large n

congruent to 1 (mod 3), and finding d

cfhc(Dn) 2 c * 2.270719168", where c is a constant.
3.3.3 Akl’s improvement

In [A2), Akl used the exact same techniques described in section 3.3.2,

except that 0) of the recursive definition of Dn was changed to defining D7,

DB’ and D9 to be drawings FTS7, FTSB, and FTS The result is that one

9°
again arrives at (1) , but with improved initial conditions. Although the
coefficients in the solution of the new system will be larger than in (1),

cfhc(Dn) remains asymptotically ¢ * 2.270719168".
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Figure 20. A 2-cfhc of Dn from a l-cfhc of Dn-3
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Figure 21. 2-cfhc’s of Dn from l-cfhc’s of Dn_3
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Figure 22. l-cfhe’s of Dn from 2-cfhc’s of Dn-3
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Figure 23. 2-cfhc’s of Dn from 2-cfhe’s of Dn-3
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3.4 Generalization of Akl’s Method
3.4.1 The basic idea

R'ecall that Dn is constructed from Dn-3 by placing three nodes
outside Dn-3’ and joining each of these three nodes to each of the three
nodes on the convex hull of Dn-3' We expand on this idea by starting with
a "kernel" drawing, and adding multiples of three nodes outside the kernel,
and again joining all outer nodes to the kernel’s convex hull. En’ Fn, and
Gn are the drawings thus created when respectively six, nine, and twelve
nodes are added outside the kernel. As the techniques used to count cfhc’s
of these three sub-drawings of TSn are very similar, we will provide a

meticulous description of how to compute cfhc(En), and only a brief

description of how to compute cfhc(Fn) and cfhc(Gn).
3.4.2 Recursive definition of En

Nodes of En are placed and numbered as for TSn.
0) Define Eq to Els' to be TS;q to TS, respectively.

We now define En in terms of E for n > 16:

n-6’

1) E . contains all arcs of E Also, all pairs of nodes of

n-6"

{nnl ..., n81} are joined with arcs.

The following is a list of all the arcs of En:
all node pairs of { n, n-1, . . ., n-8 }
all node pairs of { n-6, n-7, . . ., n-14 }

n-15
all node pairs of { n-6t, n-6t-1, . . ., n-6t-8 } , where t = [ Z ]

plus all node pairs of {1,2,3 ...,9q}, where g = 10 to 15 for n

congruent to 10 to 15 (mod 6) respectively.
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3.43 The number of cfhc’s of En

We will count cfhc’s of En as we counted cfhc’s of Dn' For
example, we ask: how many O-cfhc’s, l-cfhe’s and 2-cfhc’s of En can be
constructed from a l-cfhc of En.g ? (*2%)

Let us consider this question more carefully. Figure 24 shows how a
cfhe of En is constructed from a l-cfhc_of En-6' The lone convex hull arc
of En-6 is removed and the resulting path is joined with the outermost 6
nodes of En' The question is : in how many different ways can the above
procedure be performed ? As we shall see, this question is easily answered,
But first, we need some more definitions.

Define a shape of T59 to be a set of cfhc’s of T59, such that any of
the cfhc’s of the set can be rotated to give any of the other cfhc’s. Note
that the set of all cfhc’s of TSg partitions into shapes. Define the set of
inner arcs of TS as {@Q, 2, 3),(@ 3}. The set of convex hull arcs
of TS is { (ny n-1), (n, n-2), (n-1, n-2) } .

Figure 25 is a visual description of all shapes of TS9 whose cfhc’s all
have exactly two inner arcs. Note the correspondence between Figure 24
and Figure 25 ! In fact, the number of different ways a cfhc of En can be
constructed from a l-cfhc of En is exactly the number of different shapes
of TS9 that have exactly two inner arcs. Ergo, in order to answer (*7*) we
need to know how many shapes of TS9 with 2 inner arcs have 0, 1, and 2
convex hull arcs.

There exist cfhe’s of T59 which are unchanged by rotation. However,
all cfhc’s that have either 1 or 2 innmer arcs can be changed by rotation.
Thus, all shapes of T59 with either 1 or 2 inner arcs contain exactly three
cfhc’s. Consequently, we are now in good shape to answer (*7%) :
the number of 0, 1, and 2-cfhe’s of En that can be constructed from a

l-cfhc of En—6 is equal to
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the number of shapes of TS9 having 0, 1, and 2 convex hull arcs and 2 inner
arcs, which is equal to
one third the number of cfhc’s of T59 with 0, 1, and 2 convex hull arcs and
2 inner arcs .

Define an i,j-cfhc of TSn to be a cfhc that includes exactly i convex

hull arcs and j inner arcs. Let tsn(i,j) be the number of i,j-cfhc’s of TSn.

Let e:‘ be the number of i-cfhe’s of En. Above we showed that the number

is ts9§i,2) .
n-6 3

Figure 26 shows all ways in which cfhc’s of En are constructed, and gives

of i-cfhe’s of En constructed from a l-cfhe of E

the corresponding number of cfhc’s that arise from each cfhe of E

n-6°

Summing the terms gives the following system of equations: for i = 0 to 2
i_ o 1s9(.2) 2 ts9(i,1) _2 ts9(i,2) _1

®n = 2 3 €h-6 * 3 ®h-6 * 3 ®n-6 @)

Thus we have established a system of equations that corresponds
exactly to the system of equations (1) determined by Akl. Note that with
En (unlike Dn) it is possible to construct 0-cfhc’s. Thus (2) holds for i = O
to 2, and not just for i = 1 and 2. However, (as was the case with Dn)
cfhe’s of En cannot be constructed from O0-cfhc’s of En.g- This
corresponds to the absence of ts9(i,0) from (2).

Note that in order to use (2) to find cfhc(En), we must first find
values for ts9(i,j)) From the catalogue we see that TS_ has 1188 cfhc’s.

9

The author had classified over 900 cfhe’s of TS, by hand before he became

9
aware of the existence of Henk Meijer’s cfhc-counting computer program !
The reader is invited to laugh heartily. Needless to say, Henk’s program
was rapidly modified, and values of ts9(i,j) were computed. A table of

values of tsn(i,j) for n = 3 to 15 appears at the end of this section (see

Table IX).
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Summing tsn(i,j) over j gives the total number of i-cfhc’s of TSn.

Thus, as ElO to E15 are by definition TSlO to TSlS’ the initial conditions

1

of (2), namely e for n =10 to 15 and for i = O to 2, can also be

determined from the aforementioned table. One then finds that for large n,

cfhc(En) : ¢ * 2.551263446", where c is a constant.
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Figure 24. A cfhc of En from a l-cfhc of En-6

Figure 25. Shapes of TS, with 2 inner arcs

9
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Figure 26. All cfhc’s of En , from cfhe’s of En-6
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Table IX. Values of tsn(i,j)

1

o0 o

=N O

=N —
0N oNO

18
90
53

72
330
210

289
1188
718

1180
4538
2610

4950
18432
10215

20056
69668
37141

83239
276074
142845

355365
1147386
582327

2

wWoo

Vo o &S~ 0

o
&S0

25

4
53
61

27
210
192

125
718
542

535
2610
1759

2262
10215
6579

9266
37141
22036

38373
142845
80342

162636
582327
318204

rowsum

2
12
15

8
44
39

34
161
128

147
612
429

574
2195
1385

2295
8328
4904

9444
33597
19056

37734
126865
68443

154877
502158
261560

655237
2085078
1063167
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3.4.4 Further Generalisation

We define Fn and Gn as we defined En and D, only we will add

respectively nine and twelve nodes in our recursive construction, instead of

six nodes as in En or three nodes as in Dn' More precisely. . .

3.4.4.1 Recursive definition of Fn

Nodes of Fn are placed and numbered as for TSn.
0) Define F, to Fis to be TS, to TS, ¢ respectively.
We now define Fn in terms of Fn-9’ for n > 16:

1) Fn contains all ares of F Also, all pairs of nodes of

n-9°

{n nl, ..., n11} are joined with arcs.

In exactly the same manner as before, we find for i = 0, 1, and 2
il o 1s12G,2) 2 1s12(,1) 2 1812.2) 1
f,o= 2 3 fig * S fle 3 oo (3)

where f'n is the number of i-cfhc’s of Fn. Values for tsl2(i,j) and initial

conditions 1‘i7 to fi can be determined from the tsn(i,j) table. From (3) one

then finds that cfhc(Fn) is asymptotically c * 2.822303776".
3.4.4.2 Recursive definition of Gn

Nodes of Gn are placed and numbered as for TSn.
0) Define G, to G, to be TS, to TS, respectively.

We now define G_ in terms of G , for n > 16:
n n-12

1) G_ contains all arcs of G Also, all pairs of nodes of

n-12°

{n nl1, ...,n14} are joined with arcs.
As before, we have for i = G, 1, and 2

P _ o ts15(1,2) 2 1s15(,1) 2 ts15(,2) L1
9, = 2 3 9p.12 ¢ 3 %-12 7 3 9n-12 )
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where g'n is the number of i-cfhc’s of Gn' Values for tsl5(i,j) and initial
conditions gz to gis can be determined from the tsn(i,j) table. One can

then use (4) to show that cfhc(Gn) is asymptotically ¢ * 3.0326381".
3.4.4.3 Recursive definition of Hn

Alas, all good things must come to an end. There is no Hn’ at least
we do not bother to define one, as we have not calculated values of tsn(i,j)
for n > 15. Note that the time required for our computer program to
compute values of tsn(i,j) was almost exactly 6 times the amount of time
required to compute values of ts(n-1)i,j), for each n from 6 to 15.
Approximately 120 c.p.u. hours were required to compute tsl5(i,j). [That’s
not too bad when you consider that over 43 billion Hamilton cycles had to
be checked ! ] This extrapolates to approximately 2.95 years of c.p.u. time
that would be required to compute tsl8(i,j) [i.e., using our program on a
DEC-Vax 11-780] . Those readers with access to vast amounts of time on a
fast computer should note that computation of tsl8(i,j) will almost certainly

lead to an improved lower bound for Cp(n).
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3.5 A Refinement

I rd

We will now introduce sub-drawings Er", Fn, and Gn of TSn, which are
similar to but have more cfhc’s than En’ F and Gn respectively. Whereas

E Fn, and Gn are defined in terms of En and G

n? F

-6’ n-9’ n-12

respectively, £, F~~and G_ will be defined in terms of En.3 F_3» and

’

I

Gn-3 respectively. At the very end of this section, Table XII gives the

asymptotic number of cfhc’s of all these sub-drawings of TSn.
3.5.1 Recursive Definition of Er;

Nodes of E'; are placed and numbered as for TSn.

0) Define By to Eyg to be Ey3 to Ejg, Qe TS5 to TSy,

13

We now define E;‘ in terms of E 5, for n > 16:
1) E'; contains all arcs of Er'1-3' Also, all pairs of nodes of

{nmnl ..., nB} are joined with arcs.

’

Thus, the following is a list of all arcs of En:
all node pairs of { nnl ..., n-8 }
all node pairs of { n-3, n-4, . .., n-11 }

all node pairs of { n-3t, n-3t-1, . .., n-3t-8 } , where t = [n—g—l—s]
plus all node pairs of {1,2,3,...,q}, where g = 13 to 15 for n

congruent to 13 to 15 (mod 3) respectively.

Compare the definitions of En and F_‘n, and note that every arc of En
is an arc of En’ while En contains many arcs not in En.

4

For the sake of completeness, we include the definitions of Fn and

’ ’

Gn' For the sake of symmetry, we define Dn to be the drawing Dn.
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3.5.2 Recursive Definitions of F'; and G';

Nodes of Fn are placed and numbered as for TSn.

0) Define Fi3 to Fyg tobe Fyq to Fis i€ TS;5 to TS;s.

4

We now define F_ in terms of F ’
n n-3

1) Fn contains all arcs of F

for n > lé:

n-3° Also, all pairs of nodes of

{ n n-l, ..., nl1l } are joined with arcs.

Nodes of Gn are placed and numbered as for TSn.

0) Define G13 to G15 to be G13 to G15 (i.e. TS, 5 to TSlS)'

,

We now define Gn in terms of G';_3, for n > 16:

1) Gr'w contains all arcs of G Also, all pairs of nodes of

n-3°

{nnl, ..., n14} are joined with arcs.

3.5.3 Counting cfhe’s of Er'm’ F';, and Gr;.

We will now show how to compute cfhc(E':‘), cfhc(F';), and cfhc(Gr"),
using data already gathered in the previous sections. We first unify and
condense our notation.

Let gn be the 3-vector whose zero-th, first, and second components
are dg, drl‘, and drz1 (recall that these are the number of cfhc’s of Dn with
respectively 0, 1, and 2 convex hull arcs). Similarly, let e _f_n and 9, give
the number of 0, 1, and 2-cfhc’s of En, Fn and Cn’ and g;‘, -f-r'\’ and g;‘ the

number of 0, 1, and 2-cfhc’s of En, Fn, and Gn' We can now write system

(1) of the previous section as the following matrix equation.

0
4 (1%)
1

= N, d

d, 1 9n.3 » where N, =

o 0O o
w O o
o

Define N, to N, as the corresponding matrices from systems (2) to (4.

4
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Thus we have

Enh = NZ Ch-6 (2%) 5
= Nafas (3%) 5
9n = Ng 3512 (4%) .

In fact, from systems (1) to (4) and the above definitions of N, to N,, note

that for k = 1 to 4

0 0 0

1
Nk =3 T3+3k Q where Q =10 0 1
0 1 2

and where T _ is the 3 by 3 matrix whose component (i,j) is tsn(i,j). Recall
that tsn(i,j) is the number of cfhc’s of TSn having i convex hull arcs and j
inner arcs, for i and j = 0, 1, and 2.

We now define matrices Mk’ for k = 1 to 4, such that

Mk = % U Q , where Q is as above

343k

and where Un is the matrix whose component (i,j) is the number of cfhc’s
of TSn having i convex hull arcs and j inner arcs, and at least one arc from
{n,n—l,n—2}to{1,2,3}.

Note that Ml = Nl’ and that for k = 2 to 4

N

k

- M. * N, .
K-
i=1 J J

We have introduced the matrices Mk because we use them to compute

cfhc(E;‘), cfhc(F';), and cfhc(G;‘). In fact,

' _ ' d ’ 5
En’Ml En-3+M2 €h-6 )

’ _ 4 . 4 6 and
=M s+ My g+ M3 E )

’ .

9n = Ml 9n-3 * MZ 9n-6 * M3 9n.9 * Ma 9n-12
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From the above systems of equations (5) to (7) and the matrices M,
[the matrices N, and M, are given in Table X at the end of this chapter] it
is a straightforward exercise to calculate the asymptotic values of cfhc(En),

cfhc(Fn), and cfhc(Gn). For example, system (5) can be rewritten as

) B 97 . 7

En Ml MZ En-Z’:
- (5%)

En-3 I O En-6

where I is the 3 by 3 identity matrix, and O is the 3 by 3 zero matrix. For
large n, cfhc(Er;) / cfhc(Er"_B) is approximately equal to the dominant
eigenvalue z of the 6 by 6 matrix of system (5%). Thus for large n we have
ethe® ) 2 ¢ * 23" which is ¢ * 19.21..1/3)"  or ¢ * 2.978084514".
Table XI gives the characteristic polynomials of the matrices corresponding
to the systems of equations that give cfhc(Dr;), cfhc(Er;), cfhc(Fr;), and
cfhc(Gr;), as well as the dominant eigenvalues of the matrices, and the cubed
root of the dominant eigenvalues. Table XII gives the asymptotic rate of

growth of the number of cfhc’s of D, E, F , G, and D_, E_, F_ and

’

G-

n’

In closing, we point out that 4)(n) > cfhc(TSn) > cfhc(Gn), which we
find in the tables to be asymptotically ¢ * 3.191844775&”, for some constant
c. This disproves the conjectures (folklore) that q_)(n) is asymptotically equal

to ¢ *3" or ¢ *T7". The previous best lower bound for ¢(n) was Akl’s

(asymototic) ¢ * 2.270719168" [Al1] [A2] .
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754
3405
2193

54212
194109
106068
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Table X. Matrices Ni and Mi

0 0

4 le 0

10 0

42 0

250 hdz 0
198 0
3158 0
12954 M3 0
7791 0
226879 0
770680 hda 0
406245 0

50
14

544
2099
813

37384

119087
42516

10

42

210
78

2702
- 9862

3725

187117

578420
204119
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Table XI. Characteristic Polynomials and Eigenvalues

pl(z)=z -10z-20
p,(2) = 2~ 10 2% - 148 22 - 606 z + 960
py(2) = 26 - 10 2° - 148 2% - €430 2 - 30612 22 + 41174 z - 199031
Py = 2° - 10 27 - 148 26 - 6430 2> - 353813 2
- 1830120z° - 2269465 2% - 17503396 z - 284185367

2" = largest root of pj(z)
j z *)1/3

1 11.708204 2.270719168
2 19.21068856 2.678228602
3 26.41259396 2.978084514

4 32.51820048 3.191847754

pj(z) is the characteristic polynomial of matrix Pj’ the matrix associated
with the system of equations that gives, for j = 1 to 4, cfhc(Dn), cfhc(En),
cfhe(F n)’ and cfhc(Gn), respectively. Thus, (z*l/ %) is the asymptotic rate of

growth of the number of cfhc’s of the respective drawings.
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Table XII. Number of cfhc’s of sub-drawings of 'I'Sn

Drawing Asymptotic

Number of cfhc’s

2.270719168"

m O
0
*

2.551263446"

(o]
*

x 2.822303776"

-n
0
%

3.0326381"

9]
0
*

2.270719168"

Al |
0
*

2.678228602"

0
*

2.978084514"

(o]
%

A

C)""!‘I'TIU

3.191847754"

2
0
*

The constant ¢ may be different

for different drawings.
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4. THE COMPUTER PROGRAM
4.1 Introduction

The following is a listing of the Pascal computer program used to
compute values of tsn(i,j) for n up to 15. The original program was written
by Henk Meijer for Selim Akl. We are indebted to both Selim and Henk for
having allowed us the use of their program.

Given an input list of crossing arc pairs and convex hull arcs of a
drawing D, the original program counted the number of cfhc’s of D with 0,
1, 2, or 3 convex hull arcs, i.e. the number of i-cfhc’s of D for i = 0 to 3.
We modified the original program so that given an input list of crossing arc
pairs, convex hull arcs, and "inner hull arcs", our program now counts the
number of i,j-cfhc’s of D. That is, our program (which is listed in the next
section) counts the number of crossing-free Hamilton cycles of D with i
convex hull arcs and j inner arcs, for i and j = 0 to 3.

The program was run on a DEC-Vax 11-780. Approximately 120 hours
of c.p.u. time were needed to compute values of tsl5(i,j). The amount of
c.p.u. time needed to compute values of ts(n-1)(i,j) was almost exactly one
sixth the amount of time needed to compute values of tsn(i,j).

The program assumes that the nodes of the input drawing D are
labelled from 1 to n. The program counts all cfhce’s from (1 a...) to
(1b...), where a is the variable "second node of the cycle", and b is
"last node of the cycle". The program is constructed in this way so that the
program can be run in segments. If it is desired to compute all cfhc’s with
one run of the program, then a is set to 2, and b to n.

Whenever n (the number of nodes of D) is changed the constants n and

nl (nl is the variable n+1) must be changed and the program recompiled.
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Input to the program is the list of crossing arc pairs of D, followed
by the list of convex hull arcs of D, followed by the list of inner hull arcs
of D. The output is the matrix of the numbers of values of tsn(i,j), as well
as (optionally) a list of all cfhc’s of D.

Note that the version of the program listed in the next section is set
to compute cfhc’s of a drawing with n=6 nodes. The next section is the
listing, the following section is the input file for the drawing TS6, and the
last section is the resulting output file. This version of the program took
approximately 2 seconds of c.p.u. time on a DEC-Vax 11-780 to compute the

values of tsé(i,j) and list all 29 cfhc’s.
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4.2 Pascal Program Used to Count tsn(i,j)

program cfhe (input,output,h,hin);

(************************************************************************)

(*

(* This program finds all crossing-free Hamilton cycles.

(*

All edge crossings have to be entered as data, as well as

(* the edges that are lying on the convex hull.
(* The total number of crossing-free Hamilton cycles with

(*

i edges on the convex hull is computed for i = 0, 1, 2, or 3.

(* This is an interactive program, using files hin and h.

(*
(>
(%
(»
(*
€
(*
(»
(%

Program is written by Henk Meijer, as part of his Ph. D. research
and assistantship for Selim Akl.

October, 1979.

A subroutine to compute the inner convex hull has also been added.

Arrbee (alias Ryan B. Hayward) November, 1981.

(************************************************************************)

const n = 6
nl = 7;

var city
lastsecondcity

tourlength
i,jysum
crossings
longoutput
finished

h,hin
visitedcities
tour

ch

ich
intersections
data

(* nl equals n + 1 %)

: integer;

: integer;
totalonconvexhull : integer;
inntotalconvexhull: integer;

: integer;
: integer;
: integer;
: boolean;
: boolean;

: text;

array[1l..n1] of boolean;

: array[l..n ] of integer;
: array[l..4,1..2] of integer;

: array[l..4,1..2] of integer;
array(l..n,1..n,1..n,1..n] of boolean;
: array[0..3,0..3] of integer;
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procedure heading;
begin
if longoutput then
begin
writeln (h);
writeln (h);
writeln (h);
writeln (h);
writeln (h,”Crossing-free Tours’,
‘ Edges *);
writeln(h, g
* Quter Convex Hull Inner Convex Hull’);
writeln (h);
end;
end (* heading *);

procedure initialize;

var i,j,a,b,c,d t integer;

begin
writeln;
writeln(” *** Program to find Crossing-Free Hamilton Cycles ***°)
writeln;

crossings := O

for i := 2 to n do
begin
visitedcities[i] := false;
tour [i] := 0;
end;
visitedcities[1] := true;
visitedcities[n+1] := false;

writeln(*Enter the first "second node" of the cycle: )
read (a);

tour[1] := 1;

tour{2] := g

visitedcities{a] := true;

tourlength := 2;

writeln("Enter the last "second node" of the cycle:*);
read (lastsecondcity);

for a:= 1 to n do
for b := 1 to n do
for c:= 1 to n do
for d := 1 to n do
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intersections[a,b,c,d] := false;

reset (hin);

rewrite(h);

writeln;

writeln;

writeln (“Edge Crossings (followed by &4 zeroes)’,
* Convex Hull Edges (f.b. 2 zeroes)’);

writeln (* and Inner Convex Hull Edges (f. b. 2 zeroes)’,
* should be put in the file "hin".");

writeln(h);
writeln(h);
writeln(h, Crossing Edge Pairs‘);
writeln(h);

read (hin,a,b,c,d);

writeln(h,a,b,c,d);

while (a <> 0) do

begin
crossings := crossings + 1;
intersections[a,b,c,d] := true;
intersections[a,b,d,c] := true;
intersections[b,a,c,d] := true;
intersections[b,a,d,c] := true;
intersections[c,d,a,b] := true;
intersections[c,d,b,a] := true;
intersections[d,c,a,b] := true;
intersections[d,c,b,a] := true;

read (hin,a,b,c,d);
writeln(h,a,b,c,d);
end (* while *);

writeln(h);
writeln(h);
writeln(h);
writeln(h, Edges: Outer Convex Hull*);
writeln(h);

read (hin,a,b);
writeln(h,a,b);
i:=1;
while (a <> 0) do
begin

ch [i,1] := a
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ch [i,2] := b;

read (hin,a,b);
writeln(h,a,b);
i= i+l

end (* while *);

for j :== i to 4 do

begin
ch [j,1] := 0;
ch [j,2] := 0O
end;
writeln(h);
writeln(h);
writeln(h);

writeln(h,”Edges: Inner Convex Hull’);
writeln(h);

read (hin,a,b);
writeln(h,a,b);
ie= l;
while (a <> 0) do
begin
ich [i,1] := g
ich [i,2] := b;

read (hin,a,b);
writeln(h,a,b);
= i+l

end (* while *);

for j := i to 4 do
begin
ich [j,1] := 0;
ich [j,2] := 0;
end;

for i := 0 to 3 do
for j := 0 to 3 do
data [i,jl= 0;

writeln;
writeln("Enter 1 for listing of all tours, else 0:°);
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read (i);
if i = 1 then longoutput := true
else longoutput := false;

heading;
end (* initialize *);

function convexhull (cityl,city2 : integer) : boolean;

var i : integer;
begin
i:= 03
repeat
=i + l;

until ( ((cityl = chli,1]) and (city2 = chli,2])
or ((cityl = chli,2]) and (city2 = chli,11))
or (i=4))

if i = 4 then convexhull := false
else convexhull := true;
end (* convexhull *);

function innconvexhull (cityl,city2 : integer) : boolean;
var i ¢ integer;
begin
is= 0
repeat
=14+ 1
until ( ((cityl = ichli,1]) and (city2 = ich[i,2]))
or ((cityl = ichli,2]) and (city2 = ichli,1]))
or ( i =4 ) );

if i = 4 then innconvexhull := false

else innconvexhull := true;
end (* innconvexhull *);

procedure backtrack (var city : integer);

begin
if tourlength > 1 then
begin
visitedcities[tour{tourlength]] := false;
city := tour[tourlengthl;
tourlength := tourlength - 1;
end

else
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finished := true;
end (* backtrack *);

function nointersection (city2 : integer) : boolean;
var int ¢ boolean;
i,eityl : integer;
begin
if (tourlength <= 2) or (city2 = 0) then
nointersection := true
else
begin
i = 25
cityl := tour [tourlength];
repeat
int := intersections[tour{i-1],tour{i],
cityl, city2
=1+ 1
until ((int) or (i > tourlength));

nointersection := not int;
end (* else *);
end (* no intersection *);

procedure selectnextnonvisitedeity (var city: integer);
begin
repeat
city := city + 1;
until ( not visitedcities[city]);

if ((tourlength = 1) and (city > lastsecondcity)) then

city := 0;
(* the next backtrack will cause *)
(* the execution to stop. *)

if city = n+1 then city := 0;
(* i.e. no non-visited citv left *)
end (*select next non-visited city #);

procedure report;
var i : integer;
begin
if longoutput then
begin
fori:= 1ton do
write (h,tour[il:3);
write (h,tour{1]:3);

]
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end;

totalonconvexhull := 0;
inntotalconvexhull := 0;
for i := 2 to n do

begin
if convexhull(tour{i-1],tour{i]) then
totalonconvexhull := totalonconvexhull + 1;
if innconvexhull(tour{i-1],tour(i]) then
inntotalconvexhull := inntotalconvexhull + 1;
end;

if convexhull(tour{n],tour{1]) then

totalonconvexhull := totalonconvexhull + 1;

if innconvexhull(tour{n),tour{1]) then

inntotalconvexhull := inntotalconvexhull + 1;

data [totalonconvexhull,inntotalconvexhull] :=

data [totalonconvexhull,inntotalconvexhull] «+ 1;
if longoutput then

writeln (h,” *,totalonconvexhull,

end (* report *);

inntotalconvexhull: 18);

begin (* main program *)

initialize;
finished := false;
= l;

city

repeat

repeat

selectnextnonvisitedcity (city);
(* returns zero if no city left *)

until (nointersection(city) or (city = 0));

if (city = 0) then

backtrack (city)

else
begin
tour(tourlength + 1] := city;
tourlength 1= tourlength + 1;
visitedcities[city] := true;
city = 13

end (* else *);
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if (tourlength = n) then

begin
(* to prevent creation of symmetric tours: *)
if tour{n] > tour[2] then
if nointersection(l) then report;
backtrack (city);
end;

until finished;

writeln (h)

writeln (h);

writeln (h);

writeln (h);

writeln (h,” Number of Crossing Free Cycles’);
writeln (h);

writeln (h);

writeln (h,”Edges on Edges on Inner Convex Hull )
writeln (h,”Cuter”);

writeln (h,”Convex’);

sum :=0;
write(h, “Hull %
for j := 0 to 3 do
write(h,j:15);
writeln (h);
write (N," oo Y%
writeln (hy*ecoccmm oo %
for i :=0 to 3 do
begin
writeln(h,” )
write(h,iz6,” |*,datali,0]:11);

sum := sum + data[i,0];
for j := 1 to 3 do

begin
write(h,datali,jl:15);
sum := sum + datali,jl;
end;
writeln(h);

end;

writeln (h);
writeln (h);
writeln (h);
writeln (h);
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writeln (h,”Number of Nodes =",n:5)
writeln (h);
writeln (h,”"Number of Crossings =’,crossings:5);

writeln (h);
writeln (h,”Total Number of Crossing Free Tours =",sum:12);
writeln (h);

writeln;

writeln (“Results are written on the file "h",”);

writeln ;

writeln (“*** E£nd of Crossing Free Hamilton Cycle Algorithm ***°);

writeln (7 *** by Henk Meijer. -- October, 1979 -- *%**)

writeln (7%*x*x* *xx)s
writeln (“*** Addition of "inner convex hull" "R )
writeln (“®** r.b.h.  Nov. 1981 *x7)s
writeln;
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4.3 Input File for TS6

1524
1634
2635

cooo

N O T O NMN O
S NV O H NN O
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4.4 CQutput File

Crossing Edge Pairs

Outer Convex Hull

Edges:

n o g o

< N\ 0 O

Inner Convex Hull

Edges:

N MmN ~ O

—A N M O

Edges

QOuter Convex Hull

Crossing-free Tours

Inner Convex Hull

1 2 3 4 6 5 1

1 2 3 5 4 6 1
1 2 3 5 6 4 1
1 2 3 6 4 5 1
1 2 3 6 5 4 1

1 2 4 5 3 6 1
l 2 4 5 6 3 1
1 2 4 6 5 3 1

1 2 5 3 6 4 1

1 2 5 4 6 3 1

1 2 5 6 3 4 1
1 2 5 6 4 3 1
l1 2 6 3 4 5 1
1 2 6 5 4 3 1
l1 3 2 4 5 6 1
1 3 2 5 4 6 1

1 3 2 5 6 4 1

1 3 2 6 4 5 1

TR T T T Y
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o O O b b = N

1 3 2 6 5 4 1 2
1l 3 4 6 2 5 1 1
1 3 5 2 4 6 1 1
1 3 6 2 5 4 1 1
1 3 6 5 2 4 1 1
1 4 2 3 5 6 1 1
1 4 2 5 3 6 1 0
1 4 3 2 6 5 1 1
1 4 3 6 2 5 1 0
1 4 5 2 3 6 1 1
1 4 6 3 2 5 1 1
Number of Crossing Free Cycles
Edges on Edges on Inner Convex Hull
Outer
Convex
Hull 0 1 2
I
o I 2 0 0
I
1 | 0 12 0
I
2 | 0 0 15
I
3 I 0 0 0

Number of Nodes
Number of Crossings

Total Number of Crossing Free Tours

29
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5. CONCLUSIONS, COMMENTS, AND OPEN QUESTIONS
5.1 On crossings and cfhe’s

Let S be the set of crossings of a drawing D. Then x(D), the number
of crossings of D, is |S|, the cardinality of S. As cfhe(D) is a function
solely of S, one asks what information about cfhe(D) can be determined from
ISl, i.e from x(D). The answer is that in general, very little information can
be determined in this way. For instance, consider the following :

Let A and B be two drawings of the same graph. Then

D x(A) < x(B) does not imply  cfhc(A) > cfhe(B) ,

ii)  x(A) = x(B) does not imply cfhe(A) = cfhe(B) ,
iii)  cfhc(A) < cfhc(B)  does not imply x(A) > x(B) ,
iv)  cfhc(A) = cfhe(B) does not imply x(A) = x(B) .
Proofs:

i) Let A be drawing T59 with 36 crossings and 1188 cfhe’s, and B drawing
Singer-8 with 38 crossings and 1252 cfhc’s.
ii) Let A be drawing TS9 with 36 crossings and 1188 cfhc’s, and B drawing
FT59 with 36 crossings and 1228 cfhc’s.
iii) Let A be drawing 6N with 8 crossings and 12 cfhc’s, and B drawing 65
with 9 crossings and 13 cfhc’s.
iv) Let A be drawing 6P with 8 crossings and 13 cfhc’s, and B drawing 6S
with 9 crossings and 13 cfhc’s.

The reader is invited to find other pairs of drawings listed in the

catalogue which confirm the above.

It seems that of all drawings with a given number of crossings, there
will be a wide variation in the number of cfhc’s. Again, see the catalogue.

For instance, drawings of K9 with 36 crossings may have as few as 1184 or
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as many as 1461 cfhc’s. See Table VII.

As Newborn and Moser have remarked, x-optimal drawings are not
necessarily cfhc-optimal: there are five non-isomorphic x-optimal drawings
of K7, and three of these have fewer cfhc’s than the other two. Nabil
Rafla asks whether or not cfhc-optimal drawings of Kn are necessarily
x-optimal [NM] Note that there is some evidence to support the Rafla
conjecture : all cfhc-optimal drawings of Kn for n = 3 to 6 are indeed
x-optimal. Also, for n = 7 and 8 the drawings that establish the current
best lower bounds for @(n) and 5(n) are x-optimal. However, note that the
rectilinear drawing that establishes the current best lower bound for (-5(9),
namely the Singer drawing minus node 8, has 38 crossings (and is therefore
not x-optimal) and 1252 cfhc’s, and that all known rectilinear drawings with
fewer crossings have fewer cfhc’s. As there are about 400 non-isomorphic
x-optimal drawings of K9 and we have counted cfhe’s of only 6, it is quite
possible that there exists a rectilinear x-optimal drawing with 1252 or more
cfhc’s. Even so, because the number of cfhc’s of a drawing is so heavily
dependent on the "structure" of crossings, we conjecture that there is a

drawing of Kn that is cfhc-optimal, but not x-optimal.

5.2 Open Questions

One might say that the optimal cfhc problem itself remains an open
question. There obviously remains a great deal to be discovered about ¢(n)
and $(n). Specifically, ¢(n) and E(n) are both unknown for n > 6. Also,
the current asymptotic upper and lower bounds (for constant c)

c * 3.1918..." < &(n) < B(n) < 10000000000000"

leave quite a gap of uncertainty.

Thus, open questions are:
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i) What are the values for ¢(n) and G(n) for n > 6 2
ii) What drawings are cfhc-optimal for n > 6 ?
iii) Find an improved lower bound for d)(n) or d(n).

iv) Find an improved upper bound for (n) or $n).

A related question is
v) Determine necessary or sufficient conditions for a drawing of Kn to be
cfhe-optimal.

Note that the optimal-cfhc problem could also be posed for other
surfaces (e.g. the torus) and for other classes of graphs (e.g. the complete
bipartite graphs, the k-cube).

It appears that d)(n) and d-J‘(n) are at least as difficult to determine as
y(n) and J(n). As values for the latter two have remained unknown for
n > 10 for many vyears, it would be surprising if much progress could be
easily made on i) or ii) . However, we feel that much more can be
done on iii) . Crude extrapolation of the known cfhc values of the drawings
in the catalogue suggests that all six constructions have ¢ * r" cfhc’s for
some constant c, where r is at least 3.6 . It also appears as though BI»<Bn
has (asymptotically) at least ¢ * 4" cfhc’s. We feel that the symmetry of
some of these drawings could be exploited in determining an exact expression
for the number of cfhc’s they contain. We conjecture that @(n) is
asymptotically c * qn, and that 5(n) is asymptotically k * pn, where ¢ and k
are constants, and where p and q are both > 4 .

The proof establishing the current upper bound is essentially an elegant
counting argument; it is purely combinatorial [ACNM]  Success with iv)
might come with combining some geometric or topological result with the
work that has been done. It would be interesting to establish upper bounds
for the number of cfhc’s of the constructions given in the catalogue.

Although this would not solve iv), it would perhaps shed some light on
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whether either of the upper or lower bounds is actually close to q)(n) or
D).

We also feel that much can be done with v). Some success along
these lines has been made for the crossing-number problem. In particular,
Singer has shown that rectilinear x-optimal drawings of Kn for n > 9 have
three nodes on the convex hull, and that if these three nodes are removed,
the resulting sub-drawing also has three nodes on its convex hull. We have
been unable to prove anything along these lines, but we believe that the
following are true:

Conjecture: Let D" be a rectilinear drawing with exactly k > 3 nodes
on its convex hull. Then D" can be redrawn as D’, where D’ has exactly
k-1 nodes on its convex hull. (Thus D" can be redrawn as D, where D has

exactly three nodes on its convex hull).

Conjecture:  All cfhc-optimal rectilinear drawings have exactly three nodes

on their convex hull.

Note that the first conjecture may not imply the second, even in the case
where D" is cfhc-optimal. Let D" and D’ be as above, and let S" and S’ be
their respective sets of crossings. Let T be the (non-empty) set of crossings
in S" but not S°. Then it may be that every Hamilton cycle of D" that
contains a crossing of T also contains a crossing not in T. Thus, there will
be no Hamilton cycles that have a crossing in D" but not in D’. This,
together with the definition of a redrawing, would imply that the set of

cfhe’s of D" is exactly the set of cfhe’s of D”.

Topological results might also prove useful in v). For instance, the
observation that there can be at most one crossing on any set of four nodes

in a good drawing might come in handy.
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