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ABSTRACT

A notion of union-connection in the game of Hex is introduced as a generalization of the well-known
virtual connection. This is applied to obtain two easy-to-verify winning strategies in 7 x 7 Hex. The
extensive use of union-connection along with some related techniques leads to a new proof for the
solution of 8 x 8 Hex. It is a win for the first player (Black).

1. INTRODUCTION

In the game of Hex the first player Black always wins if Black follows a winning strategy. This is proven by
the well-known strategy-stealing argument due to Nash (cf. Gardner, 1957; van den Herik, Uiterwijk, and van
Rijswijck, 2002). For a comprehensive Hex bibliography I refer to van Rijswijck (2003). On the 7 x 7 board
Yang, Liao, and Pawlak (2001) first published an explicit winning strategy. They had found the strategy by hand,
but their proof of correctness was not exhaustive. It used precluding analysis. In his homepage, Enderton (2000)
reports about his computer program for obtaining such an exhaustive proof of correctness, and Yang’s (2003)
homepage reports about results of the 8 x 8 and 9 x 9 cases. Hayward et al. (2003) have obtained a winning
strategy for each of forty-nine opening positions on the 7 x 7 board by their computer program.

This paper introduces a notion of union-connection which is a generalization of the well-known virtual con-
nection (e.g., Yang et al. (2001), Anshelevich (2002), Hayward et al. (2003)), and demonstrates the power of
union-connections by presenting new winning strategies for 7 x 7 and 8 x 8 along with correctness proofs. By
combining it with the usual precluding analysis, we can construct complete proof trees representing winning
strategies, which consist of 22 nontrivial nodes of Black’s turn for the 7 x 7 Hex game and 52 nontrivial moves
for the 8 x 8 Hex game. As another application of our union-connection, we show that, for 7 x 7 with the initial
position which is different from the above one, the only one node (the root of the game tree) suffices to construct
a winning strategy. For 8 x 8 Hex a proof technique named AB-property is also introduced as an extension
of union-connection for handling interactions between two overlapping areas. Finally, we note that no complete
winning strategies for 8 x 8 Hex have been formally published so far. Yet, the author encourages the reader
to compare his results with those of Yang’s (2003) Java applet that plays a winning strategy according to their
findings.

2. DEFINITIONS AND LEMMAS

Let S|ab] be a virtual connection (VC for short) in S between two cells (hexagons) a and b, where S is a set
of empty cells (see Anshelevich (2002)). Unless otherwise stated, connections are assumed to be for Black, and
thus a player’s name will be omitted in our notation.

By definition, S[ab] holds if and only if, for any white move-sequence (even when White moves first), Black
connects a and b where both players make moves only at cells in S. .S will be called a supporting set (carrier) for
this connection.
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We define a union-connection S| a1by | azbs | ... | axby ] if, for any white move-sequence, there exists i (1 <4 <
k) such that Black connects a; and b; in S. If k = 1, union-connection is identical to VC. In this definition, the
order of pairs as well as the order of two cells in a pair is arbitrary (interchangeable) as an ordinary set.

We denote a — b for S[ab] when S is understood in the context. Similar notations like @ — b|c — d will be used
for union-connections.

For any black cell z (i.e., cell 2 occupied by Black), we simply write z to mean the set of black cells which are
directly connected to z (by transitive adjacency) including itself.

Let t and b represent the top-border and the bottom-border, respectively, as shown in Figure 1. Thus t —b implies
a black winning connection. .

The following properties will be used for deducing various connections. The proof is straightforward from the
definition.

Let o denote a form of |a1b; |agbe] ... lakbr (k> 0).

(1) Slablab o] implies S{ab o].

(2) If Sifab o] and S2[bc] and Sy N Sz = ¢, we have S[ac o] where
S=5US;.

In a similar way other types of deduction rules can be introduced when
necessary. Two basic connections are shown in Figure 1. They are also
well-known properties of VC. We call a type of the upper-left connection
Skip Lemma (S-lemma for short), in which  — % (and t — 2) holds. We
S-lemma: z —y. S'-lemma: t — 2. T- call atype of the lower-right connection Trapezoid Lemma (T"-lemma for
lemma: u — b. short), in which u — b holds. These lemmas will be freely used without

Figure 1: S- and T-lemmas. mentioning it explicitly.

The following Union Lemma (U, -lemma) is the key property of our winning strategy.
Lemma 1 (U;-lemma)  In Figure 2 we have S| tz | tb ], where S is the set of empty cells as shown there.

Proof: Let 35 denote the cell at column ¢ and row j. This position in
the figure forces White to make the next move only at the five cells, i.e.,
51,61,52,43, and 53. Otherwise Black will make a move at 52, leading
to t — 2. In case of White W61, W52 or W53, Black B33 immediately
leads to t — z by T-lemma and S-lemma. In case of W51, move-sequences
beginning with B62 (e.g., B62 W53 B43 W52 B32) lead to t — z. In case
of W43, the hardest move-sequence leading to t — b is W43 B53 W61 B52
W51 B32 W42 B24 W34 B25 W35 B17.

The idea for these black moves is that, for any (defending) white move, Letx be B44. Wehavet — z |t — b in the
Black always makes a threat move for attaining t — = which forces the ~dotied set S. See the proof in the text.
next defending move on White. The second move B53 forces W61. After Figure 2: U;-lemma.

this move, White has no other choices (except futile moves to try cutting

already-secured connections), because otherwise Black can immediately attain t — x. The final move B17 attains
the other connection t — b. By combining this with other forcing sequences, we have t — zort —b. [

The technique used in the above proof for reaching t — b by black threat moves for t — z in the hardest move-
sequence may be called the sidestepping technique. As a corollary of this proof, we have U, -lemma in Figure
3. In a similar way, we can prove several useful variants of the U-lemma as shown in the Figures 4 to 7.

3. OUR GAME TREE FOR THE 7x7 BOARD

The complete game-tree is shown in Figure 8. A node (written in the form of a move) represents a position
obtained by the corresponding move. For example, B44 at the root represents the position obtained by the first
black move at 44 in the initial position. For each node of White’s turn (after the corresponding previous black
move), all the white moves that are precluded in the analysis step at that node have been deleted from the game
tree.
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Letz be B44. Wehavet — z | t — b. The
proof is similar to Uz-lemma. If W43, then
B53. For this position, we also have t —
z | t — b, which we call Uz4-lemma.

Let z be B44. We have t — = | t — b. This
position appears in the proof of U, -lemma.

Figure 3: U1 -lemma.

Figure 6: Uz-lemma.

Let = be B44. Let y be B36. We have t —
x|t —y | t —b. The proof is similar to U -
lemma. If W43, then B53. For this position,
we also havet —z |t — y | t — b, which
we call Uz -lemma.

Figure S: U;-lemma.

Let z be B44. We have t —z | t — b. White
blocking of B71 leads to a similar position
in the proof of I/ 4 -lemma.

Let = be B44. Let y be B26. We have t —
z|t—y.

Figure 4: U,,-lemma.

| Figure 7: U;-lemma.

As seen in the tree, there are twenty-two nodes for Black’s turn, i.e., a to g, f.p to f.w and ¢.p to g.v, among
which twenty nodes are terminal leaf positions. Those twenty positions are classified into the final eleven patterns,
for each of which Black’s winning move is shown in the tree.

In Figures 9 to 29, those winning moves along with the correctness proof and the precluding analyses are de-
scribed in the order of a depth-first traversal of the tree. The nodes in the tree with their corresponding Figure
numbers are listed in Table 1.

We use the precluding analysis for determining the set of white nontrivial moves throughout this paper. This
precluding analysis is well-known (see Hayward er al. (2003) for a more detailed explanation of mustplay),
which is summarized as follows in our notation.

In the analysis step at a given position of White’s turn, we can preclude apparently ineffective white moves by
the following naive reasoning. We choose an empty cell z to make a fictitious black move (instead of a white
move) at z which attains t — b. Let S, be a minimal supporting set of empty cells such that S, [tb]. We take the
intersection of all of these minimal sets S, U {z}. Note that there may be more than one choice for such z and
that, for any fixed z, this minimal set is not always unique. Then all empty cells that are not in the intersection
can be precluded from the set of candidate cells for White’s next move. (The proof is obvious.) If the intersection
is empty, this position can be regarded as a terminal leaf node. Note that, if we use an appropriate connection in
place of t — b, we can apply this precluding analysis to a position defined on a part of the board.

Here we remark that Yang’s (2003) winning strategy also starts with B44 and is similar to our strategy. Of the 22

node Figure node Figure || node Figure
B44 9,10 fo 17 9.0,9-q 26
a,b 11 fa fr 18 g.1,9.8,9.t | 27

¢, d 12 f-s 19 g-u 28

e 13 fit, fu, fo| 20 g.v 29
f(B45) | 14,15,16 fw 21

g (B35) | 22,23,24,25

Table 1: Nodes and figure numbers.
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Figure 8: Our game tree of 7 x 7 Hex.

black responses to the white moves, shown in Figure 8, 17 are the same as in Yang’s strategy. Again the reader
is encouraged to compare the strategies. For the 7 x 7 opening move 35, Yang er al. (2003) also found and
published a winning strategy together with a proof using precluding analysis.

Let z be B44. We have  — b. The proof is
easy. Note that W45 B36 W35 B55 leads to
r—b.

Figure 9: Supertrapezoid (ST)
lemma.

For White’s second move, the seven moves
(a to g) are to be considered. All other
moves are precluded by ST-lemma along
with its left-shift (to *) and top-bottom sym-
metry. For example, if W33, B54 makes
t — b by two applications of ST-lemma.

Figure 10: White’s second moves.

If @ (W27) or b (W36), then B55. Let z be
B44. Lety be BS5. Wehave t—z | t—b by
Uj-lemma. We have z—y by S-lemma. We
have y — b by 7-lemma. Hence we have
t—b.

Figure 11: Case a and b.

If e (W37), then B26. Let  be B44. Let Y
be B26. We havet—z | t —y by U-lemma.,
We have y — b by S’-lemma. We have = —
y | © — b in the asterisk set. (The proof
is immediate, since W35 B45 W36 B56.)
Hence we have t — b.

Figure 13: Case e.

If ¢ (W47) or d (W46), then B36. Let z be
B44. Let y be B36. Wehavet —z | t —
y | t — b by Us-lemma. We have z — y by
S-lemma. We have y — b by S’-lemma.
Hence we have t — b.

Figure 12: Cases c and d.

If f (W35), then B45. Let = be B44. If
White’s next move is not in the dotted set,
Black moves at B52. This leadstot — b,
since t — = and z — b by T-lemma. Hence
all the cells without dots are precluded.

Figure 14: Case f (analysis 1).
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If White’s next move is in the minus (-) set,
Black moves at B36. This leads to z — b.
We also have t — z | t — b by Uz-lemma.
Hence we have t — b. All the cells with
minuses are also precluded.

Figure 15: Case f (analysis 2).

If f.s (W43), then B53. Let = be B44. We
have t — z | t — b by Uz, -lemma in the
upper-left area. We also have x — b as seen
in Figure 18. Hence we have t — b.

Figure 19: Case f.s.

If White next move is not at the cells with
dots or pluses (+), B54 makes t —z (in dots

by ST-lemma) and z — b (in pluses by B26
or B46). Hence 21, 22, 23,24, 25,31, 32 33
and 34 are also precluded.

Figure 23: Case g (analysis 2).

For White’s fourth move, the eight moves (p
to w) are to be considered. All other moves
are precluded by the above analyses in Fig-
ures 14 and 15. (We shall consider only the

cells in the intersection of sets which are
not precluded in Analyses 1 and 2.)

Figure 16: Case f (White’s fourth
moves).

If f.p (W37), then B56. Let = be B44. We
have t — = | t — b by Us-lemma. Let y be
B56. We have  — y and y — b. Hence we
have t — b.

Figure 17: Case f.p.

If f.t (W53), f.u (W52)or f.u (W6]), then
B33. Let z be B44. Let y be B33. We have
t—yandy —zandz — bby T-, S- and
T-lemmas. Hence we have t — b.

Figure 20: Cases f.t, f.u and f.v.

If f.w (WS51), then B62. Let x be B44. We
have t —x, since W53 B43 W52 B32 makes
it. We also have z — b by T-lemma. Hence

we have t — b. Note that B62 can be re-
placed by B43.

Figure 21: Case f.w.

If f.g (W27) or f.r (W36), then B53. Let
x be B44. We have t — z (by T-lemma).
We also have z — b in the dotted set. (The
proof is easy. If W46 or W37, B65 suffices.
If W47, B46 W37 B66 W56 B65 suffices.)
Hence we have t — b,

Figure 18: Cases f.g and f.r.

If g (W45), then B35. Let = be B44. We
have t — z. The proof is similar to Uy-
lemma. If White next move is not at the dot-
ted cells, Black makes = — b. This implies
t — b. Hence all the cells without dots are
precluded. Note that 54 is precluded.

Figure 22: Case g (analysis 1).

If White next move is not at the cells with
dots, B25 makes t — z (in dots). The
proof is similar to U;-lemma. Note that
(a) W43 (W52, W61 or W41) B33, (b) W42
(or W51) B23, (c) W33 B43, and (d) W32
(or W31) B42. B25 also makes z — b (in
pluses). Hence 71, 62 and 53 are also pre-
cluded.

Figure 24: Case g (analysis 3).

For White fourth move, the seven cells (p to
v) are to be considered. All other cells are
precluded through Analyses 1 to 3.
Figure 25: Case g (White’s fourth
moves).

If g.p (W61) or g.q (W52), then B33. Let
z be B44. Let y be B33. We have t — y by

T-lemma and z
havex —b |t
we have t — b.

y by S-lemma. We also
b by Uj 4+-lemma. Hence

Figure 26: Cases g.p and g.q.



If g.r (W41), g.s (W42) or g.t (W51), then
B52. Let z be B44. Let y be B52. We have
z —y. We also have t — y. (Cases g.r
and g.s are obvious. For g.t, the hardest
sequence B52 W61 B32 W42 B24 suffices
tosee this.) Wehave z—b | y—b [t —b by
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If g.u (W43), then B53. Let z be B44. We
have z — b. (The proof is similar to Uy .-
lemma.) By the top-bottom symmetry, We
also have t — z. Hence we have t — b.

Figure 28: Case g.u.

If g.v (W27), then B25. Let z be B44. We
have t — z. (See Figure 24.) We also have
z —b |t — b by Up.-lemma. Hence we
have t — b.

Figure 29: Case g.v.

Uz -lemma in the lower-right area. Hence
we have t — b. Note that g.t can also be
done by B62.

Figure 27: Cases g.r, g.s and g.t. |

By examining our 7 x 7 tree more carefully along this reasoning, we can further reduce the size of the tree in
Figure 8 (e.g., from twenty-five nodes to five), although the analysis at each node becomes more complicated.

For 7 x 7 Hex, if we pursue the smallest possible number of nodes in the
game tree, we can prove that only one node suffices. We choose Black’s
first move at 34, rather than 44. For the initial precluding analysis at the
root, B54 is used as a fictitious move as shown in Figure 30. Let z and y be
B34 and B54, respectively. In the lower-half area of the board including 44
and 64, we can prove that both = — b and y — b hold, which may be called
AN D-lemma. Given this position, if White’s next move is at 44, Black
moves at 26 for z — b. Then Black also secures y — b. For any other white
move, Black moves at 44, which directly connects z and y. The desired
connection z — b can be proved by straightforward case analyses.

Figure 30: A precluding analysis
for the 7 x 7 game tree with only
one node. In the upper-half area including 24 (disjoint from the above area), we can

prove that, if we restrict the analysis within this area, all the empty cells are
precluded for attaining t — z|t —y, i.e., two consecutive white moves in this area cannot cut this union-connection.
The proof is almost the same as the above.

By the top-bottom symmetry, we can deduce t — b, unless White’s second move is at 44 or 54. These two
surviving moves can be precluded by B26. The proof is easy.

4. A WINNING STRATEGY IN 8x8 HEX

Our method has been applied to the 8 x 8 board to make a complete winning strategy. The game tree consists
of 108 nodes of positions as shown in Figure 31. Actually it is drawn in the form of a DAG including confluent
paths to (almost) identical positions. In the figure, P+ means that P is a representative of White blocking moves
in that there are some other blocking moves which are regarded as trivial variations of P. As usual, we traverse
the tree in the depth-first order for the correctness proof. In each of the 52 positions of White’s turn (® nodes),
we make a precluding analysis. The remaining 56 nodes (plus the initial position of the game) represent Black’s
positions to make winning moves. Each of those black moves is depicted at its succeeding ® node. The tree has
12 terminal leaf nodes. Among them, 8 leaf nodes (denoted by ¢) represent positions in which no white next
moves survive the precluding analyses. The other 4 leaf nodes (denoted by w) represent final-stage positions in
which Black has the straightforward forcing winning move-sequences, i.e., in which all White’s moves (possibly
having some trivial variations) are forced.

The description of the whole proof is reasonably simple (for the complexity of 8 x 8), though it is still too long
to include here, as requiring about 200 figures for the precluding analyses in the 52 cases. Here we shall sketch
the outline of our proof and explain all the basic ideas used there.
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Figure 31: Our proof tree of 8 x 8 Hex.

The basis of our proof for 8 x 8 is the following union-connection.

Lemma 2 (Ug-lemma)

In Figure 32 we have z — b | y — b, where the
supporting set of empty cells for this connection is shown
there.

Proof: The proof is similar to U;-lemma for 7 x 7. Eight cases
W45, W55, W46, W37, W47, W28, W38 and W48 need to be
checked, since in other cases B46 suffices.

For W45, Black’s move is B55. Each of five blocking moves (W46, Let ﬂi) and y kl))e B34 and B72, respectively. We have
W56, W47, W38 and W48) can be easily shown toleadtoz — b,  °~ Pl¥—P

. . .. .. Figure 32: Ug-lemma.
For W55, Black’s move is B45. This leads to a position similar to

U, -lemma, which can be shown to attain z — b | y — b. More specifically, after W55 and B45, five white moves
W36, W46, W37, W28 and W38 need to be checked. For W36 or W38, B46 easily attains z — b. For W46, B36
leads to a similar position in U;-lemma, which can be dealt with by the sidestepping technique (W55 B45 W46
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Let r and y be B54 and B43, respectively. Let 2 be B54. We have z — b.
Wehavez —b |y - b |t —b. .
Figure 34: Hypertrapezoid (HT) lemma.
Figure 33: A huge lemma.

B36 W28 B37 W38 B47 W48 B67 W57 B66 W56 B74). For W28 or W37, B46 manages White’s succeeding
blocking moves by the sidestepping technique in a similar way as above.

For W46, Black’s move is B65. Each of five blocking moves (W56, W66, W57, W48 and W58) except W66 can
be easily shown to lead to  — b. The remaining W66 can be dealt with by the sidestepping technique starting
with B56. The hardest move-sequence leading to y — b is W46 B65 W66 B56 W48 B57 W58 B77 W67 B85
W75 B84 W74 B83.

For W38, Black’s move is B46. The proof is easy by left-right symmetry. For the remaining four cases, Black
move is also B46, since White’s blocking moves can be dealt with by the sidestepping technique (which is similar
to the subcases of W55 above). O

Many variants of this lemma as well as the sidestepping technique are extensively used throughout the analyses.
As one of such variants we can prove a huge lemma in Figure 33. Proving z — bly — b|t — b may be fun. (Find a
superb move for W46.) The hypertrapezoid (HT') lemma in Figure 34 is another example, which can be proved
by using the sidestepping technique. Note that, for W57, Black’s move is B47.

The initial analysis at the root for White’s second moves (depth 1)
leaves 18 nontrivial cases as shown in Figure 35. In this analy-
sis the fictitious black moves are B44 and B64 (both using ST-
and HT-lemmas) and B46 (using an 8 x 8 version of Us-lemma in
Figure 5 plus S- and T-lemmas). Among the 18 cases, six cases
(c,l,m,n, 0,p) are precluded by more detailed analyses. The fic-
titious black moves are B35 for ¢ (using a variant of H7-lemma),
B72 for [, m (each using U8-lemma), B44 for o (using HT-lemma),
and B43 for n, p. In the last case n and p, we have z —b|y —b|t — b
(the huge lemma in Figure 33), z — y (S-lemma) and y — t (T Figure 35: The initial analysis for White’s
lemma) without including n and p in the supporting set. Hence the second moves in 8 x 8 Hex.

12 cases survive as shown in Figure 31.

In a similar way, the remaining 51 nodes can be analyzed by appropriately choosing the set of fictitious black
moves at each node. As another example, Figure 36 shows an interesting position, among many others, which
demonstrates the power of union-connection. In this position we can prove that Black wins by applying two
variants of union-connection in the left and right disjoint areas as seen in the figure. Thus in the descendent of
node e (after B54 W37 B46), the fictitious move B53 precludes W63. This position also implies that, in the
descendent of node r (after B54 W63 B53), the fictitious move B46 precludes W37.

In order to make our case-analyses simpler, the notion of union-connection is extended. This is best explained
by means of an example. The upper-left T-lemma in Figure 37 can be given an additional property named AB-

property.
Lemma 3 (AB-property for T-lemma)
Let = be B33 in the upper-left of Figure 37. We have not only  — t but also the following property: starting

with the empty T area (8 empty cells including A and B), at any time of White’s turn, if White occupies A4, then
Black occupies B.

Proof: The proof is done by the case analysis. For White A, Black moves at B. This forces White to move at 41
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Let x and y be B54 and B46, respectively. Wehave t—z |t—y |t—b  In the lower-right, let z and y be B54 and B3
in the left area, and = — b | y — b [ t — b in the right area. Hence = — y | =z — b and AB-property.
we have t — b, since z — y.

~J

, respectively. We have

Figure 37: Two examples of AB-property.
Figure 36: Applying two variants of U-lemma.

and then Black moves at 22. For White playing at B, Black moves at 32, leaving A empty. For W41 as well as
other white moves, Black moves at B. In all these cases, we have z — t and the desired property. [

Note that, at any time, when White occupies both A and B (necessarily A after B), Black has already secured
z — t and is able to make a move outside the 7T area.

The AB-property serves as a connecting interface between two adjacent areas whose supporting sets of empty
cells are mutually disjoint. Actually the above lemma 3 need not be used in our proof. Two types of A B-property
explained below are used at three nodes (among the descendents of a, j, and ¢).

The lower-right in Figure 37 shows a useful lemma with z — y|z — b as well as A B-property. The proof is similar
to the above.

Consider the position in Figure 38, which appears in the descendents of node j and ¢. In this position we can
prove t —b, without any deeper searching. For any white move-sequence, starting with this position, Black attains
t — x|t — y|t — b in the upper-left area. Among White’s candidate moves, W43 is the hardest case, since in other
cases Black easily attains t — z. W43 can be dealt with by using the sidestepping technique plus AB-property.
Consider the sidestepping move-sequence leading to B24 and W34 (i.e., W43 B63 W71 B62 W61 B52 W51 B32
W42 B24 W34). In this position, Black can choose either B16 or B25 depending on the configuration at A and
B, for attaining the desired connections t — x|t — y|t — b. If A is White, Black chooses B 16, because B is Black
by AB-property. If A is empty (or Black), Black chooses B25. (If White has occupied both A and B, Black can
make an additional move in the upper-left area.) In the lower-right area we have z — y|z — b and y — b. Hence
we have t — b. This implies that W48 or W53 can be precluded in the analysis for the fourth move in ¢ or j,
respectively.

Let = and y be B54 and B37, respectively. We have t — b. See the  Let z be BS4. We have t —z | t — b and x — b, which implies t — b.
proof in the text.

Figure 39: Proving t — b by A B-property (2).
Figure 38: Proving t — b by AB-property (1). g g y property (2)

A slightly more complicated pattern of AB-property appears in a descendent of node a. In the lower-right in
Figure 39, starting with the supporting set of empty cells, not only z — b but also the following property can be
proved. If White occupies A, then Black occupies B and secures B — b (S-lemma) and z — b. This z — b can be
verified by noting the sequence W46(A) B47(B) W56 B66 W65 B84 W75 B85 W76 B86 W78 B77 W68 B67.
If White occupies B, then Black occupies 76 for 2 — b, which makes A4 and C useless for White’s moves any
more. If White occupies C, then Black occupies B and secures z — B (S-lemma) and z — b. For any other White
move, Black occupies B.

In the position in Figure 39, it is now easy to see that, in the upper-left area, the sidestepping move-sequence can
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be dealt with by this AB-property. In this case, after W81 B62 W61 B52 W51 B32 W42, the finishing sequence
is B24 W34 B25 W35 B17 W18 B27, leadingtot — b (ort — z and = — b).

Finally, a notable move-sequence is shown in Figure 40, which
leads to w in case of g. At White’s tenth move (W35), all other
white moves can be precluded by the fictitious black moves at B35
and B36. Note that W36 is precluded by B35. We can also prove
that, for any white move prior to W34 in the lower area in the figure,
Black has an immediate way to attain t — b. For example, if White
moves at 37 instead of 61, then Black moves at 35, implying that
t — z and z — b in two disjoint supporting sets, where z is B54. In
fact, in the position just after B62 (1 in the figure), Black’s fictitious
Figure 40: Black winning move-sequence MOVes B61 and B35 preclude all the empty cells except 61. In Fig-
in the descendent of case g. ure 40, after W35 (10), the forcing move-sequences beginning with
B26 (11) easily attains t — z and z — b (or t — b). Several minor
variations of White’s forced moves after B26 (11) can be dealt with similarly. Hence we conclude that all white
moves from 2 to 24 may be regarded to be forced for preventing Black from immediate attaining of t — b.

5. CONCLUDING REMARKS

We have introduced a notion of union-connection and presented some techniques based on it for proving the
correctness of the winning strategies for the 7 x 7 and 8 x 8 boards in a simple and constructive way. All the
results here were reported at the workshop (Noshita, 2004), though the proof for 8 x 8 has been refined since
then.
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