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6.1 Introduction

In 1984, the second author made a bet with Manfred Padberg. He wagered that it is
NP-complete to determine if a graph contains an odd chordless cycle of length at least
five, but that determining if a graph or its complement contains such a cycle takes
only polynomial time. If these questions were not settled by the turn of the century,
the bet was to be called off. The second author is very glad that the new millennium
has begun, as he now believes that both problems can be solved in polynomial time
and that this fact will be proven soon. We expect that after finishing the chapter, the
reader will share these beliefs.

This chapter discusses the structure of various classes of graphs obtained by
forbidding induced cycles of specified lengths and their complements. Our main
interest is decomposition theorems which yield efficient recognition algorithms.

By a hole, we mean an induced cycle of length at least four. A graph is an anti-hole
if its complement is a hole. The length of a hole or anti-hole is the number of vertices
on it. A hole or anti-hole is long if it has length at least five.

We focus mainly on three classes of graphs, those with no long holes or anti-holes,
those with no even holes, and bipartite graphs without holes of length 2 mod 4.

We recall that the Strong Perfect Graph Conjecture states that a graph is perfect
precisely if it has no odd holes and no odd anti-holes (i.e. if it is Berge). The study
of graphs without long holes and anti-holes was motivated by this conjecture. As we
shall see, the interest in the last two classes of graphs on which we focus stemmed
from the study of g-perfect graphs and balanced matrices respectively. Nevertheless,

Perfect Graphs. Editor J.L. Ramirez Alfonsin and B.A. Reed
(©2000 John Wiley & Sons Ltd.



120 HAYWARD AND REED

the approach used to characterize these classes may well lead to a polynomial time
recognition algorithm for graphs without odd holes, and thus also for Berge graphs.

6.2 Graphs with no Holes

Graphs with no holes are called chordal, since in such graphs every cycle with four or
more vertices is not an induced cycle and so has at least one chord. Chordal graphs
are also known as triangulated graphs, although the name chordal is perhaps more
descriptive and less likely to be confused with the unrelated geometric notion of
triangulation.

The hole with five vertices is self-complementary, and every anti-hole with six or
more vertices contains a hole with four vertices, so if a graph is chordal then it has no
long anti-hole. Thus chordal graphs are Berge. Indeed, the knowledge that both chordal
graphs [3] and complements of chordal graphs [44] have chromatic number equal to
maximum clique size was instrumental in motivating Claude Berge to introduce the
notion of perfection and to propose the two Perfect Graph Conjectures (see Chapter
1 and also [5]).

Chordal graphs are a well studied class of graphs; see for example Chapter 4 in [40]
and Chapters 1 and 3 in [8]. The foundation on which the theory of chordal graphs
rests is a theorem of Dirac, stated below.

For vertices z,y of a graph G, a vertex subset S is a vertex separator if x and y are
in different components of G — S. We say a vertex separator S for z and y is minimal
if no proper subset of S is a vertex separator for z and y.

Theorem 6.1 [29] G is chordal if and only if all of the minimal vertex separators in
G are cliques.

Corollary 6.2 G is chordal if and only if every induced subgraph of G is either a
clique or has a clique cutset.

These two results were proven in Chapter 2. Readers who do not remember the
simple proof can either reproduce it themselves or flip back to that chapter.

As we now show, these results allow us to develop polynomial time algorithms for
solving many problems on chordal graphs.

Gavril showed that decomposing a graph along clique cutsets yields a tree-like
decomposition structure having only a polynomial number of leaves, each of which
corresponds to a non-decomposable subgraph [39]. Whitesides showed that such
decompositions can be obtained in polynomial time and lead to polynomial time
algorithms for many optimization problems in many superclasses of chordal graphs
[78]. By Corollary 6.2, if G is chordal then the non-decomposable graphs at the leaves
are cliques. So to test if G is chordal we need only test if each leaf corresponds to a
clique, which is easy to do efficiently. Thus clique cutsets do indeed lead to efficient
algorithms for chordal graphs.

The schema sketched above generalizes to many other classes of graphs and is the
template for many of the recognition algorithms we present. How it has evolved over
time is the main subject of this chapter. For this reason, we give a formal definition
and an example of a clique cutset tree below (at the very end of this section). Actually,
chordal graphs have very strong structural properties which permit the development
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of recognition and optimization algorithms which are much simpler and faster than
those obtained using this widely applicable approach. We now digress briefly from our
main topic to discuss more fully the structure of chordal graphs.

A simplicial vertex of a graph is a vertex whose neighbours induce a clique. A
simplicial vertex ordering is an ordering of the vertices of a graph such that every vertex
is simplicial in the subgraph induced by the vertex and all previous vertices. These
orderings are also known as (perfect) vertex elimination orderings, and sometimes
defined in the reverse order (that is, so that each vertex is simplicial with respect to
all following vertices).

From Theorem 6.1, it is easy to obtain:

Theorem 6.3 A graph is chordal if and only if

[35] it has a simplicial ordering,
[10] [38] [78] it is the intersection graph of subtrees of a tree.

The first of these properties leads to simple and efficient algorithms for many
problems on chordal graphs. Specifically, Rose, Tarjan, and Leuker [69] used it to
establish optimal® algorithms for recognition and the four standard perfect graph
optimization problems, namely

e mazimum clique: find a maximum size clique,

o mazimum independent set: find a maximum size independent set,

o minimum clique covering: find a vertex partition into the minimum number of
cliques, and

o minimum colouring: find a vertex partition into the minimum number of independent
sets (known as colour classes in this context).

These algorithms are based on the graph traversal method known as lexicographic
breadth-first search. A Lexicorgraphic Breadth First Ordering (LBFO) of a graph is
obtained by continually refining an ordered partition of those vertices not yet ordered.
The partition is initialized to be the single set consisting of all vertices. At each step,
any vertex v is removed from the first partition set and placed next in LexBFS order;
each partition set S is then replaced (so that its relative position among the other
partition sets is maintained) with ST = SN N(v) and S~ = S — N(v), with ST
immediately preceding S~.

Also, for any simplicial ordering, assigning to each vertex in order the smallest
positive integer not already assigned to any of its preceding neighbours yields an
optimal colouring (this is partly what inspired Chvétal to introduce the superclass
of chordal graphs known as perfectly orderable graphs, see Chapter 7 and [11]); thus
colouring chordal graphs takes linear time.

The preceding recognition algorithm is easily modified to return a hole whenever
the input graph is not chordal, so finding a hole in an arbitrary graph takes linear
time.

! For an input graph with n vertices and m edges, a linear time algorithm is one which takes ©(n+m)
time. Assuming that graph input itself requires linear time, any algorithm which takes linear time
is clearly (within a constant factor of) optimal.
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Figure 6.1 A clique cutset tree.
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We close this section with a formal definition of a clique cutset tree T(G) of a graph

G:

each node t of T'(G) is labelled with a subgraph H; of G

the root is labelled by G

every leaf is labelled by a subgraph of G with no clique cutset,

for every internal node t there is some clique cutset C' of H; such that if the
componenents of H; — C are Uy, ...Uy then the children of H; are labelled with the
subgraphs G induced by C' U Uy, ...,C U Uy,

Notice that clique cutset trees are not unique, since graphs can have multiple and/or
overlapping clique cutsets. A clique cutset tree is shown in Figure 6.1. Note further
that similar trees can be defined for any class of cutsets.

6.3 Graphs with no Discs

A disc is a long hole or a long anti-hole. Graphs with no disc, called weakly chordal
or weakly triangulated, were introduced by Hayward as a natural generalization of
chordal graphs within the class of Berge graphs [45]. Since the only difference in terms
of forbidden holes and anti-holes between chordal graphs (no hole and no long anti-
hole) and weakly chordal graphs (no long hole and no long anti-hole) is the hole with
four vertices, it is not surprising that there are characterizations of weakly chordal
graphs of similar nature to the above characterizations of chordal graphs. In order to
present these characterizations we need to define some structures which generalize the
notions of clique cutset and simplicial vertex.
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A star cutset is a cutset which contains a vertex adjacent to all other vertices in
the cutset; such a vertex is a center of the cutset. Star cutsets, introduced by Chvéatal
[12], generalize several kinds of cutset, including clique cutsets (see Chapter 8). As we
now see, they come in two flavours.

A star cutset S centered at v is full if S = {v} U N(v).

A vertex dominates another vertex if its closed neighbourhood contains the other
vertex’s open neighbourhood, i.e. x dominates y if {x} U N(z) contains N (y). Notice
that if a vertex is simplicial then it is dominated by each of its neighbours. Also notice
that if  dominates y then = + N(y) is a star cutset unless V =z + y + N(y).

Observation 6.4 A graph with a star cutset has either a full star cutset or a
dominating vertez.

Proof. If S is a star cutset with center x and x + N(z) is not a full star cutset then
some component U of G — S is completely contained in N(x). But then z dominates
every vertex of U. O

An even pair in a graph is a pair of non-adjacent vertices such that every induced
path joining them has an even number of edges (see Chapter 4). A two-pair is an even
pair where every such path has two edges. Two vertices form a two-pair if and only
if their common neighbourhood is a vertex separator for them. Thus, a two-pair can
be thought of as a special kind of cutset. Actually, the common neighbourhood will
form a star-cutset with one of the two vertices unless the graph consists only of the
two vertices and their common neighbours.

P, denotes an induced path with k vertices. An edge is simplicial if it is not the
middle edge of any Py. Simplicial edges are analogous to simplicial vertices in that a
vertex is simplicial if it is not the middle vertex of any P;. The vertices of a two-pair
are not the end vertices of any P, (or Py>5), so the vertices of a two-pair of a graph
form a simplicial edge in the complement of the graph. The converse is not true, since
the vertices of a simplicial edge in the complement of a graph can be the end vertices
of a Py>5 in the graph. Analogous to a simplicial vertex ordering, a simplicial edge
ordering is an ordering of the edges of a graph such that each edge is simplicial in the
subgraph formed by the edge and all preceding edges.

Theorem 6.5 A graph G is weakly chordal if and only if

[52] every induced subgraph is a clique or has a two-pair,

[46] for every induced subgraph H, H has a star cutset or is a clique or the complement
of a perfect matching,

[45] for every induced subgraph with three or more vertices, either the subgraph or its
complement has a star cutset,

[49] it has a simplicial edge ordering,

[45] for every induced connected subgraph H with some minimal cutset C' such that
the subgraph of H induced by C is connected, every component of H—C has some
vertex which is adjacent to every vertezx of C.

Remark 6.6 The first four characterizations are all consequences of the last
characterization, which was obtained first. For a strengthening of the last
characterization (describing conditions whenever the subgraph of H induced by C is
disconnected) see [50)].
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Figure 6.2 The smallest known domination-free weakly chordal graph.

One direction of the third characterization can be strengthened slightly: if a graph
has some vertex in no disc, then either the graph or its complement has a star cutset
[48].

A graph is a domination graph if every induced subgraph with at least two vertices
has a dominating vertex. Domination graphs are weakly chordal (since long holes have
no dominating vertex), and the previously described relationship between star cutsets
and dominating vertices suggests the question of whether the converse holds. The
answer is no, although the smallest known example, shown in Figure 6.2, has twenty-
four vertices [45]. The complexity of recognizing domination graphs is open: Dalhaus
et. al. have an algorithm which recognizes a large subclass of domination graphs [28§],
but Rusu and Spinrad show that this subclass is proper [71].

Since a minimal imperfect graph has a connected complement and has no star
cutset [12], the second characterization above implies that weakly chordal graphs are
perfect. However, it does not lead immmediately to efficient algorithms for weakly
chordal graphs. One problem is that the tree-like star cutset decomposition analogous
to the clique cutset decomposition, mentioned above, can yield an exponential number
of non-decomposable graphs as leaves [12]. Thus some stronger structural property is
needed to provide efficient algorithms for weakly chordal graphs.?

Fortunately, weakly chordal graphs do indeed have very strong structural properties
which permit us to develop such algorithms. Once again, we digress briefly from our
main focus to discuss these algorithms.

An even pair has the property that its contraction (namely, replacement of the pair of

2 Actually, strictly speaking this is only true with respect to optimization, as the techniques we
discuss in later sections could be used to develop recognition algorithms based on a simple variant
of these star cutset decomposition trees.
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vertices with a single vertex whose neighbourhood is the union of the neighbourhoods
of the two vertices being replaced) does not change either the graph’s largest clique
size or its chromatic number (an optimal colouring of the original graph is obtained
from an optimal colouring of the resulting graph by assigning the two-pair the same
colour as the contracted vertex). Furthermore, contracting a two pair cannot create a
disc, so contracting a two pair in a weakly chordal graph yields a new weakly chordal
graph. For more on this topic, see chapter 4.

Hayward, Hoang, and Maffray presented polynomial time algorithms for both the
weighted and unweighted versions of our four optimization problems [52], which are
based on repeatedly contracting two pairs. Arikati and Pandu Rangan obtained a
speedup of these algorithms by reducing the time to find a two-pair [1]; Spinrad
and Sritharan obtained further improvements [74]. The currently fastest unweighted
optimization algorithms are due to Hayward, Spinrad, and Sritharan and take O(nm)
time; the algorithms exploit the so-called handle structures to reduce the total time
spent finding two-pairs [53].

While two-pair contraction leads to efficient optimization algorithms for weakly
chordal graphs, it does not lead to efficient recognition algorithms for these graphs,
since such contractions can destroy discs. For example, consider a graph with some
vertex x in a disc and some vertex y adjacent to every vertex in the graph except z; then
{z,y} is a two-pair whose contraction essentially deletes z, consequently destroying
the disc which contained z. There is an operation on two-pairs which neither creates
nor destroys discs, namely adding an edge between a two-pair [74]; this is the basis
of the currently fastest recognition algorithm for weakly chordal graphs, which takes
O(n + m?) time [53].

No analogue of the intersection tree characterization of chordal graphs is known
for weakly chordal graphs; however, there are some graph classes between these
classes which have natural intersection graph characterizations, for example, the
neighbourhood subtree tolerance graphs, or NeST graphs [51], which includes among
other classes interval graphs and tolerance graphs.

As well as chordal graphs and NeST graphs, other well known classes of graphs
properly contained in the class of weakly chordal graphs include brittle graphs [54],
chordal bipartite graphs [40], cographs [27], domination graphs [28], permutation
graphs [40], split graphs [40], threshold graphs [40], tolerance graphs [41], classes of
visibility graphs [34] [16], and also the classes consisting of the complements of graphs
of these classes.

A comparability graph, also known as a transitively orientable graph, is a graph
whose edges can be oriented such that if there is an arc (namely, an oriented edge)
from z to y and an arc from y to z, then there is an arc from z to z. As with weakly
chordal graphs, there are no known linear time recognition or optimization algorithms
for comparability graphs. The bottleneck in these algorithms is a matrix multiplication
subroutine used in finding a transitive orientation; for example, recognition takes
O(m+mn+ X) time [64], where X is the time required for n by n matrix multiplication,
currently ©(n?-376--) [26]. In fact, the problems of recognizing comparability graphs
and recognizing triangle-free graphs are known to be linear-time equivalent: a linear
time algorithm for either one would imply a linear time algorithm for the other [33].
On the other hand, there are linear time recognition and optimization algorithms for
graphs which are both weakly chordal and comparability [31].
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We could try and obtain a proof of the Strong Perfect Graph Conjecture by
characterizing larger and larger superclasses of the weakly triangulated graphs defined
in terms of constraints on the disc size. The most natural such superclass is the class
of Berge graphs with no disc with seven or more vertices, namely graphs all of whose
discs are of length six. While the perfection of this class is not known, it is known
that the subclass of so-called murky graphs, namely graphs with no Cs, Ps and Pg,
is perfect [47].

6.4 Graphs with no Long Holes

We now turn our attention to the superclass of weakly chordal graphs consisting of
all graphs with no long hole. We remark that this is not a class of perfect graphs,
as it contains all the odd anti-holes. More strongly, Hoang and McDiarmid [56] and
independently Randerath and Schiermeyer[67] have shown that for every c there exists
a graph G without long holes such that x(G) > cw(G). Gyérfas [43] conjectured that
there is some function f such that every graph G with no long holes has chromatic
number at most f(w(G)).

Although this conjecture remains open, we do know a fair bit about the structure
of graphs without long holes. Consider for example the following characterization,
conjectured by Sritharan and proved by Chvatal and Rusu [14]:

Theorem 6.7 A graph has no long hole if and only if every induced subgraph with
some edge has some edge which is simplicial in the subgraph.

Remark 6.8 Cs has three simplicial edges but deleting any one of them yields a
graph containing o Cs. This is essentially the reason that weakly chordal graphs are
characterized by the existence of simplicial edge orders while graphs without long holes
are characterized by the existence of a simplicial edge.

This theorem yields the following (new) characterization of graphs with no long
holes:

A cutset S is a double star cutset with center (u,v) if u and v are adjacent nodes of
S and S C N(u) U N(v).

Theorem 6.9 A graph has no long hole if and only if every induced subgraph either

(i) has a star cutset,
(11) has a double star cutset, or
(i) is a clique or Cy or two non-adjacent vertices.

Proof. Long holes satisfy none of (i)-(iii), so we need only prove that a graph G without
long holes satisfies one of these properties. By Theorem 6.7, we may assume that G
has a simplicial edge zy. If V = {z,y} U N(z) U N(y) then we can assume V —z — y
is a clique as otherwise there is a double star cutset centered at xzy containing all of
V except two non-adjacent vertices. Now, it is easy to see that if V —z —y is a clique
then one of (i)-(iii) must hold.

So, we can assume that there is a vertex z in V —z —y — N(z) — N(y). Now, if y
dominates x then y+ N (x) is a star cutset separating x from z. So we can assume that
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there is a vertex v in N(z) — N(y). Since zy is simplicial, v sees all of N(y) — N(z).
Thus, = + v + N(y) is a double star cutset centered at zv separating y from z. O

An induced path (vy,...,v;) in a graph is the middle of a P;, if there are vertices
vo and wvgy1 such that (vg,v1,...,v,ve41) is an induced path. Sritharan generalized
Theorem 6.7 as follows [14]:

Theorem 6.10 A graph has no hole with k or more vertices if and only if each induced
subgraph with at least one Py_3 has some Pj_3 which is not the middle of any Pr_1
in the subgraph.

The following characterization due to Eschen and Sritharan categorizes graphs with
no long hole according to the size of admissible anti-holes by refining the definition of
simplicial edge [32]. A simplicial edge is k-simplicial if in the complement of the graph
the vertices are not the two end vertices of any induced path with at least four and at
most k vertices. Cy denotes an induced cycle with k vertices. 2K, is the graph with
four vertices and two non-adjacent edges, namely the complement of Cjy.

Theorem 6.11 A graph has no long hole and no long anti-hole with k + 1 or fewer
vertices if and only if for every induced subgraph H with at least one edge,

if H has no 2K, then at least |H|/2 of the edges of H are k-simplicial, and

if H has some 2K, then some 2K> has both edges k-simplicial in H.

In a graph with n vertices, two vertices form a two-pair if and only if they form an n-
simplicial edge in the the complement of the graph. Setting k = n, the above theorem
implies that every weakly chordal but not chordal graph has two two-pairs whose four
vertices induce a cycle.

Some subclasses of Berge graphs with no long hole but some long anti-holes are
known to be perfect. For example, Rusu showed that for any fixed even p > 6, the
class of graphs in which every hole is even and has at least p and at most 2p — 6
vertices is perfect [70]; such graphs have no long anti-hole (since they have no Cy or
C5), so their complements have no long hole. Also, Maffray and Preissmann showed
that Berge graphs with no Ps (and so no long hole) and no K3 are perfect [60].

While finding a hole in a graph takes only linear time, the fastest known algorithm
to find a long hole takes ©(mn?2-375-) time [73], where again the exponent 2.376. .. is
due to matrix multiplication. This is perhaps not surprising, since there is no known
algorithm for the simple problem of finding a triangle in a graph which is faster than
matrix multiplication.

6.5 Balanced Matrices

In the next section we discuss balanced graphs, which are those bipartite graphs which
have no hole of length 2 mod 4. As with perfect graphs, much of the interest in this
class of graphs is due to their importance in the theory of integer programming. In
this brief section, we explain the link between balanced graphs and integer programs.

This material is motivational in nature. The only fact from this section that we will
need later is that there is a class of balanced graphs, the totally unimodular graphs,
for which membership testing is in P.



128 HAYWARD AND REED

We recall that a 0 — 1 matrix A is perfect precisely if the polyhedron
{x >0,Az < b}
is integral for all 0-1 vectors b. A 0 — 1 matrix A is balanced if the polyhedron
{z >0,Az > b}

is integral for all 0-1 vectors b.

In [4], Berge proved that a 0 — 1 matrix A is balanced precisely if it contains no
square submatrix of odd order with precisely two ones in each row and column (see
[6] and [36] for extensions).

A 0-1 matrix A is totally unimodular if the polyhedron

{z >0,Az < b}

is integral for all integral b. Thus a totally unimodular 0-1 matrix is perfect by
definition. In fact, as shown by Hoffman and Kruskal in [57], a 0-1 matrix is totally
unimodular if and only if

{z >0,Az > b}

is integral for all integral b. Thus, totally unimodular 0-1 matrices are also balanced.

In [72], Seymour obtained a beautiful decomposition theorem for totally unimodular
matrices which is the basis of a recognition algorithm for this class. In the next section,
we describe a polynomial time algorithm due to Conforti, Cornuejols, and Rao for
recognizing balanced matrices. To do so, we first transform our matrices into graphs.

For any 0 — 1 matrix A, we define a bipartite graph G(A) such that (i) the vertices
on one side of the bipartition correspond to the columns of A, (ii) the remaining
vertices correspond to the rows of A, and (iii) two vertices on opposite sides of the
bipartition are adjacent precisely if the corresponding row and column intersect in a 1.
We note that we have actually defined a bijection between bipartite graphs and 0 — 1
matrices (this is a bijection to labelled graphs, permutations of the rows and columns
correspond to relabellings of the nodes).

Remark 6.12 This is a more natural and more general way of building graphs from
matrices than using the matrix to represent cligue-node incidence, for example each
matriz gives rise to a unique graph.

We say that a graph is totally unimodular if the corresponding matrix is. Since it
is easy to construct the matrix corresponding to a given graph quickly, we can use
Seymour’s characterization of totally unimodular matrices to test if a graph is totally
unimodular in polynomial time.

For the same reason, the characterization of Berge implies that to efficiently test if
A is a balanced matrix we need only be able to determine in polynomial time, if G(A)
is a balanced graph.

6.6 Bipartite Graphs with no 4k+2 Hole

Recall that a cutset S is a double star cutset with center (u,v) if v and v are adjacent
nodes of S and S C N(u)UN (v). Conforti, Cornuejols, and Rao (Theorem 1.2 of [22])
proved:
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Figure 6.3

Theorem 6.13 Every balanced graph which is not totally unimodular has a double
star cutset.

Remark 6.14 Totally unimodular graphs do not seem natural from a graph theoretic
viewpoint. We could actually decompose totally unimodular graphs further using
another decomposition, the 2-join, obtaining a decomposition theorem which would
be much more appealing to graph theorists. However, Theorem 6.13 yields a much
simpler algorithm than this more graph-theoretic variant.

We now explain how they applied this theorem to obtain a recognition algorithm
for balanced graphs.
Just as is the case with star cutsets, double star cutsets come in two flavours:

Definition 6.15 A double star cutset S centered at (u,v) is full if S = N(u) UN(v).

Observation 6.16 A connected bipartite graph with a double star cutset either
contains a dominated node or a full double star cutset.

The recognition algorithm of Cornuejols, Conforti, and Rao proceeds as follows:

1. If G contains a dominated node z then to determine whether G contains an
unbalanced hole, it tests whether G — = contains an unbalanced hole.

2. If G contains a full double star cutset S then to determine whether G contains an
unbalanced hole, it tests for each component U of G — S whether S + U contains
an unbalanced hole.

3. If G contains no double star cutset then to determine whether G contains an
unbalanced hole, it tests if G is totally unimodular.

We note that this algorithm essentially builds a double star cutset decomposition
tree. However, rather than decomposing into many pieces when there is a dominated
node it simply deletes the dominated node. As we shall see, this ensures that the
resultant decomposition tree has only a polynomial number of nodes.

An astute reader will have noticed that simply applying the algorithm given above
will not allow us to test if a graph is balanced. We would fail given a graph G' which
contains a dominated node x for which G contains an unbalanced hole but G — x does
not (see Figure 6.3 for an example of such a graph). Conforti, Cornuejols, and Rao use
the subroutines above to test for the existence of unbalanced holes of a special type,
which they call clean. They then show that for any graph G, there is a family F of
subgraphs of G such that G contains an unbalanced hole precisely if one of the graphs
in F contains a clean unbalanced hole. Combining these results yields the desired
algorithm to test if a graph is balanced. Forthwith the details.
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Figure 6.4

Figure 6.5

6.6.1 Some preliminary remarks

A graph is called balanceable if we can assign a label (or weight) of +1 or —1 to each
of its edges so that he total weight on every cycle is a multiple of four (and such a
labelling is called balanced). Clearly every balanced graph is balanceable.

A bipartite graph is a 3-path configuration (3PC) if it consists of three chordless
paths between two vertices on opposite sides of the bipartition , such that every pair
of paths forms a hole (see Figure 6.4). Note that in any labelling of a 3PC, each of
the 3 paths has weight 1 or 3 mod 4 so some two of them will form a hole of total
weight 2 mod 4. Thus no balanceable graph contains a 3PC, and hence neither does
any balanced graph.

A bipartite graph is a k-wheel, for k > 2 if it consists of a hole H and a vertex z
such that |[N(z) N H| = k (see Figure 6.5). A k-wheel is an odd wheel if k is odd. We
now verify that no balanceable graph, and hence no balanced graph, contains an odd
wheel (H,z). We do so by considering the hole H and all the holes formed by taking
two consecutive neighbours of z on H and the subpath of H — N(z) between them.
Each edge of the odd wheel is in two of these holes and hence contributes 2 mod 4 to
the sum of their weights. So, since the odd wheel has an odd number of edges, in any
weighting the total weight of these holes must be 2 mod 4. Thus, clearly, they cannot
all be of length 0 mod 4.

Truemper[76] proved that these are all the minimal unbalanceable graphs:

Theorem 6.17 A bipartite graph is balanceable if and only if it it contains neither a
3PC nor an odd wheel.

Remark 6.18 See [2/] for an easy proof of this theorem and a discussion of its
consequences.

By a short 3-wheel, we mean a 3-wheel (H, z) such that two of the components of
H — N(z) are vertices (the 3-wheel of Figure 6.5 is short). For a given choice of (i)
z, (i) u,v,w in N(z), and (iii) an induced path of length five: uyvzw, we can test in
polynomial time whether there is a short 3-wheel (H, z) with uyvzw C H by checking
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Figure 6.6

if w and w are in the same component of G — N(v) — (N(y) —u) — (N(2) —w) —
(N(x) — u — w). So, by running through all the possibilities for z,u,y,w, z,v we can
determine if G has any short 3-wheel in polynomial time.

For two adjacent nodes v and v in a bipartite graph, a simple 3PC through (u,v)
is a 3PC consisting of three paths between a neighbour 4’ of 4 and a neighbour v’ of
v such that (i) one path is v'uvv’, and (ii) the interiors of the other two paths are in
different components of G— N (u) — N (v). As the reader can verify, it is straightforward
to determine if there is a simple 3PC through » and v in polynomial time.

We note that there are also polynomial time algorithms to (i) determine if G contains
a dominated node and if so find one, and (ii) determine if G contains a full double
star cutset and if so find one. Again, a keen reader may verify these facts herself.

6.6.2 Clean holes

With these preliminary remarks out of the way, we can now define the special type of
unbalanced hole we focus on and indicate why they are easier to handle then arbitrary
unbalanced holes.

Definition 6.19 A tent over a hole H consists of two adjacent nodes x and y
of G — H such that (i) N(z) " H = N(z') N (H) for some node z' of H, (ii)
N@y)NH = N(y')N (H) for some node y' of H, (i) ' and y' are not adjacent.

Definition 6.20 A hole H is clean if

(a) no vertex sees more than two vertices of H,

(b) for any vertex which sees two vertices of H, there is a vertex x' of H such that
NEZ)NH=N(z')NH, and

(c) there is no tent over H.

The following lemmas explain our interest in clean holes.

Lemma 6.21 If for o bipartite graph G with no short 3-wheel, one of the shortest
unbalanced holes in G is clean and x is a dominated node of G then one of the shortest
unbalanced holes in G — x is clean.

Lemma 6.22 If a bipartite graph G with no short 3-wheel contains a full double star
cutset centered at (u,v) and one of the shortest unbalanced holes in G is clean then
either,



132 HAYWARD AND REED

(i) For some component U of G — S, one of the shortest unbalanced hole in U + S is
clean, or
(i) there is a simple 3PC through (u,v).

Lemma 6.23 For any graph G, we can find in polynomial time a family F of
subgraphs of G such that if G contains an unbalanced hole then for some F € F
one of the shortest unbalanced holes in F' is clean.

We discuss the proofs of these lemmas below, after having shown how they are used
in our algorithm for recognizing balanced graphs.

6.6.8 A recognition algorithm

By Lemma 6.23, to develop an efficient algorithm for recognizing balanced graphs,
we need only provide an efficient algorithm which given a graph F returns either (i)
F is unbalanced, or (i) F is either balanced or an unbalanced graph none of whose
shortest unbalanced holes is clean. We now present such an algorithm. We assume F’
is connected as we can test each component of F' separately.

Algorithm: Short Unclean Hole Testing
Input: A connected graph F
Output: either (i) F' is unbalanced, or
(ii) F is either balanced or an unbalanced graph none of whose
shortest unbalanced holes is clean.
Data Structures: A list £ of graphs.

Step 0: Determine if F' is bipartite and contains no short 3-wheel, if not
return (i) and stop. Otherwise, set £ = {F'}

Step 1: If £ is empty return (ii) and stop. Otherwise, let H be the first
graph on L.

Step 2: Determine if H has a dominated node. If it does, let = be such a
node. Add H — z to £ and return to Step 1.

Step 3: Otherwise, determine if H has a full star cutset. If it does we let
S be such a cutset. We check if there is a simple 3PC through
the center of the star-cutset. If such an object exists we return
(i) and stop. Otherwise, letting Uy, ..., Uy, be the components of
H — S, we add the graphs H; =U; U S, ..., H, = Ur U S to L.

Step 4: Otherwise, we test if H is totally unimodular. If it is not, we
return (i) and stop. If it is, we return to Step 1.

Now, this algorithm clearly terminates as a simple induction argument shows that
we add at most n™ graphs to £ when applying the algorithm to a graph with n nodes.

Applying Lemmas 6.21 and 6.22 in conjunction with Theorem 6.13 and Observation
6.16, we see that if we do not stop in Step 0 then throughout the rest of the algorithm
the following property holds: £ is a list of connected (bipartite) subgraphs of F' such
that F' is an unbalanced graph one of whose shortest unbalanced holes is clean if
and only if one of the graphs on £ also has this property. So, when the algorithm
terminates, it returns the right answer.

We now consider the time complexity of the algorithm. Our previous remarks show
that processing one graph by carrying out Steps 1-4 can be done efficiently, it remains
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only to bound the number of subgraphs to which we apply the algorithm, i.e. the
number of graphs added to L.

To this end, we focus on the induced paths of length three in F. We let h(F') be
the number of pairs of vertices {z,y} of F' such that neither z nor y is dominated and
there is an induced path zvwy in F. The key to our analysis is the following:

Observation 6.24 If for a graph F', we add k graphs Fi, ..., Fy, to L upon applying
the algorithm to F' then Zle h(F;) < h(F).

Proof. Tt is easy to verify that if a node is dominated in F' and is in F; then it is
also dominated in F;. So, for each F;, any pair of vertices counted towards h(F;) also
counts towards h(F). Thus, we need only show that no pair of vertices counts towards
h(F;) and h(Fj) for distinct ¢ and j. This implies that k is at least two and thus
that we decomposed F' using a full double star cutset. S, with centre (u,v) say. Now,
suppose to the contrary that there is such a pair z,y. Then z,y € V(F;)) NV (F;) = S.
Furthermore, x and y are on opposite sides of the bipartition, so, by symmetry, we
can assume z € N(v) and y € N(u). Since z and y are non-adjacent, this yields
y # v and x # u. Now, since z is not dominated by w in Fj; , it must see a vertex of
U;. Symmetrical arguments imply that y sees a vertex of U; and so there is a path
from z to y in = + y + U;. Similarily, there is a path from z to y in x + y + U;. But
these two paths yield a simple 3PC through (u,v) in F. Hence, we should not have
decomposed F' in Step 2 rather we should have halted because F' is not balanced. This
contradiction yields the desired result. O

We call a graph F trivial if h(F) = 0. Using our observation, a simple inductive
argument implies that when we apply our algorithm to a nontrivial graph F', at most
|V (F)|h(F) non-trivial graphs are added to L. It is then straightforward to show that
the total number of graphs added to £ is at most |V (F)|>h(F) (because a connected
trivial bipartite graph without a dominated node is a vertex).

Thus, our algorithm does indeed run in polynomial time.

6.6.4 A fresh look at cleanliness

To complete our discussion of balanced graphs, we return to the three lemmas on clean
holes stated earlier.

Proof of Lemma 6.21. Let G be a bipartite unbalanced graph one of whose shortest
unbalanced holes H is clean. Let x be a vertex of G dominated by some other vertex
z'. If z is not a vertex of H then H is a shortest unbalanced hole of G — z which is
clean, and we are done. Otherwise, since H is clean, H' — x + z' is a hole. Clearly, H'
is a shortest unbalanced hole of G and hence of G — z, we need only show that if G
contains no short 3-wheel then H' is clean.

Now no vertex y of G — z — H' is adjacent to more than three vertices of H', as
otherwise y would be adjacent to at least three vertices of H, contradicting the fact
that H is clean. Similar reasoning yields that if y is adjacent to three vertices of H'
then y sees z' but not z and for some y' in H, N(y) N H = N(y') N H. This implies
that z and y form a tent over H, contradicting the fact that it is clean.

If some vertex y of G — z sees exactly two vertices of H' then one of the two cycles
formed by y and a path of H' between the two vertices in N(y) N H' is unbalanced.
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So, since H' is a shortest unbalanced hole of G, there must be a vertex y' of H' such
that N(y)NH' = N(y')Nn H'.

Finally, if there is a tent over H' then either there is a tent over H or one of the
vertices of the tent sees 2’ but not x. In this latter case, as shown in Figure 6.7, there
is a short 3-wheel in G. O

Proof of Lemma 6.22. Let G be a bipartite unbalanced graph one of whose shortest
unbalanced holes H is clean. Let S be a full double star cutset of G centered at (u,v).
If H does not intersect two components of G — S then for some component U of G— S,
we have that H is a shortest unbalanced hole of U 4+ S which is clean, and we are
done.

Now, since H is clean, [N(u) N H| <2 and [N(v)NH|<2,s0 |HN S| < 4.

If IN(u) N H| = |[N(v) N H| = 1, then H along with the vertices u and v induces a
simple 3PC through u and v, and we are done.

If |IN(u) N H| = 2 and |N(v) N H| = 0 then since H is clean, there is a vertex u' of
H such that H' = H — 4’ + u is a hole. Note that H' is a shortest unbalanced hole of
U U S for some component U of G — S. Proceeding as in the proof of Lemma, 6.21, we
can show that either G contains a short 3-wheel or H' is clean.

By symmetry, if |[N(v) N H| = 2 and |N(u) N H| = 0 then the desired result holds.
So, if [HN S| =2, we are done. If |[H N S| € {3,4}, we proceed in a similar manner.
For more details, we refer the reader to [22]. O

Proof of Lemma 6.23. This lemma builds on the following result of Conforti and Rao
[25]

Lemma 6.25 For any shortest unbalanced hole H in o bipartite graph, there are a pair
of vertices a and b in H such that N(a)UN (b) contains the set Nf; = {2|N(2)NH > 3}.

Proof (Sketch). We partition Nj; into M}, and L%, in accordance with the bipartition
of G, and show that there is a vertex of H seeing all of My;. By symmetry, there is a
vertex seeing all of L};. Clearly, we can assume that H has at least eight vertices and
|M};| > 2. Note that the former implies that G contains no Cs.

We first observe that every vertex x in M}, sees an odd number of vertices of H as
otherwise there would be an unbalanced hole shorter than H, induced by x and some
path of H between two neighbours of z. Using this fact, it is straightforward to show
that for every two vertices  and y in M7, there is a vertex of H seeing both z and
y as otherwise there would be an unbalanced hole shorter than H induced by some
subset of V(H) + = + y.

Now, it is also straightforward to show that, in a bipartite graph, if every pair of
vertices on one side M have a common neighbour then either the graph contains a
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Cs or some vertex on the other side sees all of M. Combining these results yields the
lemma. For further details the readers may consult ([25] pp. 37-39). O

Cournejols, Conforti, and Rao (see Lemma 3.6 and 3.7 in [22]) were able to
strengthen this result proving:

Lemma 6.26 For any shortest unbalanced hole H in a bipartite graph, there are a
pair of edges be and fg in H such that N(b) U N(c) UN(f)U N(g) contains the set
N} ={2|N(z)NH > 3} as well as a vertex from every tent over H.

This implies that for every shortest unbalanced hole H there are two Pys: abcd and
efgh of H such that H is clean in the graph Hopeqergn = G — (N (D) UN(c)UN(e) U
N(f))—a—b—c—d—e—f—g—h).

Since there are at most n® choices for the two Pys, the desired result follows.

6.6.5 Recognizing balanceable graphs

In [17], Conforti, Cornuejols, Kapoor, and Vuskovi¢ extend the results of Conforti,
Cornuejols, and Rao by presenting an algorithm to determine if a graph is balanceable.

We note that the algorithm for determining if a graph is balanceable can be used
to determine if a graph is balanced, as follows. We first check if G is balanceable, if
it is not then obviously it is not balanced. So, we will assume G is balanceable. Next
we choose some spanning forest F' and for each edge e of F' check the length of the
unique hole H, through e in e+ F'. If any of these holes are unbalanced then obviously
G is not balanced, so we assume the contrary. In this case, the only labelling of G
which labels every edge of F' with a 1 which could conceivably be balanced is the all
1s labelling. We claim that G has a balanced labelling in which all the edges of F' are
labelled 1, which implies that G is balanced.

To prove our claim we note that for any subset A of V, every cycle contains an
even number of edges in the cut consisting of the edges between A and V — A. Hence,
given a balanced labelling, swapping the signs of all the edges in a given cut yields a
new balanced labelling. Applying this result once yields that for any edge e of G we
can find a balanced labelling in which e is labelled 1. Applying it repeatedly we can
obtain that there is a labelling in which all the edges on F' are labelled 1 because for
every edge e of F there is a cut containing e and no other edge of F.

We remark that for any graph G, by considering a spanning forest F' and the holes
H, as above, we can find a unique candidate labelling of G in which all the edges of
F' are labelled 1, such that no other labelling with all the edges of F' labelled 1 is
balanced. Mimicking the proof of our claim, we see that G is balanceable if and only
if our candidate labelling is balanced. In fact these remarks show that the problem
of recognizing balanceable graphs is equivalent to the problem of determining if a
labelling is balanced.

The algorithm for determining if a graph is balanceable is similar in many respects
to that given above for recognizing balanced graphs. The only difference is that
the analogue of Theorem 6.13 states that a balanceable graph which is not totally
unimodular and has at least 11 vertices has a double star cutset or one of other
two decompositions: a 2-join or a 6-join. Thus, the authors had to use these new
decompositions in their algorithm and prove analogues of Lemmas 6.21 and 6.22 for
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them. Readers can refer to [17] for the details.

6.7 Graphs without Even Holes

The recognition algorithm for even-hole free graphs was motivated by and has a similar
structure to that for balanceable graphs. Once again, the key is a decomposition
theorem. To state this theorem we need some definitions:

Definition 6.27 A graph is a clique-tree if each of its mazimal 2-connected
components is a cliqgue. A graph is an extended clique-tree if it can be obtained from a
clique tree by adding at most two nodes.

Definition 6.28 A star cutset S is a k-star cutset if for some cligue C of size k in
S: S —C CUzeaoN(z).

Definition 6.29 A connected graph G has a 2-join if its nodes can be partitioned into
two sets V1 and V so that V; contains disjoint non-empty subsets A; and B; such that:

(a) every node of Ay is adjacent to every node of As,
(b) every node of By is adjacent to every node of Bs,
(c) there are no other edges between Vi and Va2, and
(d) If |A;| =1 and |B;| = 1 then V; does not induce a chordless path.

Theorem 6.30 Every connected even hole free graph which is not an extended clique
tree has either a k-star cutset for k < 3 or a 2-join.

Remark 6.31 This theorem is really just a restatement of work of Conforti,
Cornuejols, Kapoor, and Vuskovié.

To apply this theorem to solve the recognition problem for even hole free graphs,
we once again need to focus on a special class of clean even holes. The definitions are
more complicated than in the balanceable case, we refer the reader to [19] for details.

In any event, using an algorithm similar to Short Unclean Hole Testing, Conforti et
al. reduce the problem of testing if a graph is even hole free to determining if extended
clique trees are even-hole free. Clearly, clique trees contain no holes. Moreover, it is
not hard to see that in a clique tree there is at most one induced path between every
pair of vertices. So, if G — z is a clique tree, to determine if G is even hole free we
need only test for every pair y, z of neighbours of G, whether there is a path from y to
z in G — z which has an even number of edges and contains no other neighbour of x.
Since there is at most one path to test, this can be done in polynomial time. A similar
algorithm allows us to test in polynomial time if an extended clique tree contains an
even hole.

Thus, Theorem 6.30 can be used to show that recognizing even hole free graphs is
in P. We believe that it can also be used to prove:

Conjecture 6.32 Fvery even hole free graph contains a vertex whose neighbourhood
can be partitioned into two cliques.

Of course, for perfect graph theorists, the real interest of this decomposition theorem
is the possibility that similar results might be obtained for odd hole free graphs.
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6.7.1 The decomposition theorem

We now derive Theorem 6.30 using three decomposition theorems due to Conforti et
al.

Definition 6.33 A cap is a hole together with a node which is adjacent to two adjacent
vertices but nothing else on the hole. G is cap-free if none of its induced subgraphs is
a cap.

Definition 6.34 A gem is a P, together with a vertex which sees all of the Pj.

Note that if x and y are the endpoints of a Py in a gem then they are joined
through the gem by paths of both parities. Clearly, either (a) one of these paths can
be extended to an even hole or (b) there is a 3-star cutset separating x and y contained
in the union of the neighbourhoods of the other three vertices in the gem. So, every
even hole free graph which contains a gem has a 3-star cutset.

Conforti et al. proved:

Theorem 6.35 FEvery connected even hole free graph which is not an extended clique
tree and contains no gem but contains a cap has either a k-star cutset for k <3 or a
2-join.

By our earlier remarks, this implies:

Corollary 6.36 FEvery connected even hole free graph which is not an extended clique
tree but contains a cap has either a k-star cutset for k < 3 or a 2-join.

n [19], Conforti et al. define the class of basic graphs. Every basic graph is either
(a) chordal, (b) a biconnected triangle-free graph, or (c) a biconnected triangle-free
graph H along with a vertex adjacent to all of H. They also prove in [21]:

Theorem 6.37 FEvery biconnected triangle-free even hole free graph is an odd hole or
has a star cutset.

Remark 6.38 Actually they prove a much stronger result.

Clearly, if some vertex in a graph sees all the others than either the graph is a clique
or contains a star cutset. Furthermore, by Corollary 6.2, every chordal graph which is
not a clique has a star cutset. Thus we have:

Corollary 6.39 FEvery basic graph which does not have a star cutset is either a clique
or an odd hole.

An amalgam defined in [65] is a special kind of star cutset (see [12]). In [20], Conforti
et al. prove:

Theorem 6.40 Every cap-free graph which is not basic has an amalgam.

Since both odd holes and cliques are clearly extended clique trees, combining this
result with Corollary 6.39 and Corollary 6.36 yields Theorem 6.30.
We remark that the results of Conforti et al. easily imply (we omit the details):
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Figure 6.8

Theorem 6.41 A cap-free even hole free graph G satifies one of the following:

(a) G is triangle-free

(b) G has a clique cutset,

(c) G has two adjacent vertices with the same neighbour set,
(d) G has a vertex which is adjacent to all the other vertices.

This allows us to prove Conjecture 6.32 for cap free graphs. Indeed we obtain by
induction that every vertex which is non-adjacent to some vertex is non-adjacent to a
vertex whose neighbourhood splits into two cliques. We omit the details.

6.8 [(-Perfect Graphs

For any ordering {v1,...,v,} of the vertices of a graph G, we can greedily colour G by
considering the vertices in turn and colouring v; with the lowest nonnegative integer
not already used on a neighbour of v; (i.e. not appearing on N(v;) N {vy,...,v;_1}). In
this fashion, we can colour G with A + 1 colours; where A is the maximum degree of
a vertex in the graph. Actually, we can do much better.

We let 8(G) = mazgca{d(H) + 1} where §(H) is the minimum degree of H. We
order the vertices by repeatedly removing a vertex of minimum degree in the subgraph
of vertices not yet chosen and placing it after all the remaining vertices but before
those already removed (see [63] for results on this order; in [13] this order is discussed
in relation to perfect graphs). Applying our greedy colouring procedure to this order
yields x(G) < B(G) (as was noted in [63] and [75]).

We call a graph G §-perfect if for every induced subgraph H of G, x(H) = B(H).
We note that an even hole H satisfies x(H) = 2 and G(H) = 3 so §-perfect graphs
are even hole free. On the other hand, there are even-hole free graphs which are not
B-perfect, one of these is depicted in Figure 6.8. In fact, no exact characterization of
B-perfect graphs is known.

There are some partial results on this question. In [62], Markossian, Gasparian, and
Reed proved that if G is even hole free, contains no cap, and contains no Cy with just
one chord then G is S-perfect. De Figuereido and Vuskovié strengthened this result
in [30], by proving that cap-free even hole free graphs are (-perfect. Furthermore,
although even hole free graphs are not S-perfect, they do satisfy y > g +1 (this result
is obtained by noting that every pair of colour classes in a colouring of an even hole
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free graph induces a forest and then counting edges, see [62]). Note that Conjecture
6.32, if true, yields w > % + 1. Finally, Gasparian, Markossian, and Reed[62] proved:

Theorem 6.42 G and G are B-perfect if and only if G and G are even-hole free.

This is an interesting analogue of the strong perfect graph conjecture. It does not
completely characterize 3-perfect graphs as there are graphs which are -perfect whose
complements are not. The smallest such graph is Cj.

The study of even-hole free graphs was motivated by the connections to 8-perfection
discussed above.

6.9 Graphs without Odd Holes

A 2-division of a graph is a partition of its vertex set into two parts neither of which
contains a maximum clique. Hoang and McDiarmid[56] call a graph 2-divisible if all
of its induced subgraphs permit a 2-division.

Clearly, for any colour class S in an w colouring of a graph, (S,V —S) is a 2-division.
Thus, every perfect graph is 2-divisible. On the other hand, an odd hole has chromatic
number three and thus no 2-division. Thus, every 2-divisible graph is odd hole free.

In [56], Hoang and McDiarmid made the following conjectures.

Conjecture 6.43 G is 2-divisible if and only if it is odd hole free.

Conjecture 6.44 Both G and G are 2-divisible if and only if G is perfect.
We propose the following conjecture.

Conjecture 6.45 Both G and G are 2-divisible if and only if G is Berge.

Note that the first two conjectures together trivially imply the SPGC. Actually, as
remarked by Hoang and McDiarmid, the second conjecture is equivalent to the SPGC.
Thus, it implies the third conjecture. So the third conjecture is a common weakening
of the first two.

Conjecture 6.43 provides some motivation for the study of odd hole free graphs
independent of the SPGC.

Hoang and McDiarmid proved Conjecture 6.43 for claw-free graphs; a graph is claw-
free if it does not contain the graph consisting of a stable set of size three together
with a vertex adjacent to all three vertices of the stable set. Their proof relies on the
following two results.

Theorem 6.46 [15] Every Berge claw-free graph is perfect.

Theorem 6.47 [2] Every connected odd hole free claw-free graph containing a stable
set of size three is Berge.

Combining these results we see that every claw-free odd hole free graph containing
a stable set of size three is perfect and hence 2-divisible. Thus, Hoang and McDiarmid
only needed to prove Conjecture 6.43 for graphs with stability number at most two,
which is straightforward.
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Figure 6.9 Three special graphs from Hsu’s decomposition.

Conjecture 6.43 also holds for planar graphs because planar odd-hole free graphs
are perfect and hence 2-divisible (see [77]).

Robertson, Seymour, and Thomas [68] proved that Conjecture 6.43 holds for graphs
with w < 3. They actually proved that every odd hole free graph not containing a clique
of size four is four colourable which, as noted by Hoang and McDiarmid, amounts to
the same thing.

Of course, these results all use structural properties of the graphs under
consideration. As we now discuss, these properties also lead to recognition algorithms
for some of these graph classes.

Chvatal and Sbihi [15] showed that every claw-free Berge graph can be decomposed
using clique cutsets into graphs in two simple base classes thereby obtaining a
polynomial time recognition algorithm for the class (see also [61]). By Lemma 6.47
this algorithm can be used to test if a claw free graph containing a stable set of size
three contains an odd hole. Now, if a graph contains no stable set of size three then
it is odd hole free if and only if it is Cy free. So we can also deal with the remaining
case efficiently, and have a polynomial time algorithm to test if claw-free graphs are
odd hole free.

Clearly, a planar graph is odd hole free precisely if it is Berge.

In [58] Hsu proved that every planar Berge graph either has a cutset of size at most
four or is either a comparability graph, a line graph of a bipartite graph, one of the
three graphs in Figure 6.9, or a graph obtained from the leftmost graph in this figure
by replacing one or more of the three horizontal edges with an odd path. This allowed
him to reduce the problem of testing if a planar graph is Berge to testing if a graph is
in one of these three classes. The result was an O(n?) algorithm for testing if a planar
graph is Berge. For further details, see [58].

The result of Robertson, Seymour, and Thomas did not lead to a polynomial time
recongition algorithm for testing if a K4-free graph contains an odd hole. Indeed, this
problem is still open, as is the problem of testing the perfection of a K4-free graph.

Cap-free odd hole free graphs are called Meyniel because it was Meyniel who proved
such graphs are perfect [65]. Burlet and Fonlupt [9] proved that every cap-free odd
hole free graph which is not basic has an amalgam. They used this special case of
Theorem 6.40 to develop a polynomial time recognition algorithm for cap-free odd
hole free graphs.

Conforti et al. used Theorem 6.40 to obtain an algorithm to recognize cap-free even-
signable graphs; a graph is even signable if its edges can be labelled with 1s and -1s so
that the sum of the edges around every triangle is odd but the sum around every hole
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is even. They have also obtained recognition algorithms and decomposition theorems
for other classes of odd hole free graphs. Most interestingly, they have recently shown
that graphs without odd holes and holes of length four are perfect [23].

With all this interest in characterizing odd hole free graphs, and with weapons
with proven track records being brought to bear, it appears that this problem will be
resolved in the near future.
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