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Abstract
We propose Expected Work Search (EWS), a new
game solving algorithm. EWS combines win rate
estimation, as used in Monte Carlo Tree Search,
with proof size estimation, as used in Proof Num-
ber Search. The search efficiency of EWS stems
from minimizing a novel notion of Expected Work,
which predicts the expected computation required
to solve a position. EWS outperforms traditional
solving algorithms on the games of Go and Hex.
For Go, we present the first solution to the empty
5×5 board with the commonly used positional su-
perko ruleset. For Hex, our algorithm solves the
empty 8×8 board in under 4 minutes. Experiments
show that EWS succeeds both with and without ex-
tensive domain-specific knowledge.

1 Introduction
Efficient search algorithms are critical for finding solutions
in large problem spaces. For example, Monte Carlo Tree
Search was a key component in finding faster matrix multipli-
cation algorithms [Fawzi et al., 2022]. Search has also been
shown to improve reasoning and problem solving capabilities
of large language models [Yao et al., 2023].

Expected Work Search (EWS) is a novel search algorithm
for two player zero sum games with perfect information.
EWS utilizes estimates of both win rate and proof size in or-
der to predict the expected amount of work that it will take
to solve a given position1. The Expected Work (EW) heuris-
tic is used to direct the search towards smaller, less expensive
solutions, and minimize the time wasted searching more com-
plex wins, or losing variations. We evaluate EWS by solving
small-board positions from the two player perfect information
games of Go and Hex. This involves proving which player
wins with optimal play, and creates a complete winning strat-
egy which has a response for every possible opponent move.

EWS combines and extends elements of two popular al-
gorithms, Proof Number Search (PNS) [Allis et al., 1994]

1We call the complete game state a position, including informa-
tion such as the board configuration of a Go game and the move
history where needed. Furthermore, we identify nodes in the search
tree with the positions they represent.

and Monte Carlo Tree Search (MCTS) [Browne et al., 2012].
These algorithms use dynamically updated heuristics to ef-
ficiently find solutions, which can give them an edge over
more traditional minimax-based programs such as αβ solvers
[Knuth and Moore, 1975]. MCTS uses its win rate estimation
to deeply search lines of play following the best moves found
so far. PNS estimates proof sizes, and seeks to minimizes
proof or disproof numbers in order to quickly find a solu-
tion. Both algorithms have strengths and weaknesses. MCTS
makes no effort to find an easy solution in a short amount
of time, while PNS can spend much time on searching deep
forcing lines that do not work.

Our results show that combining win rate and proof size es-
timation into a single Expected Work heuristic allows EWS to
outperforms existing search algorithms in both Go and Hex.
EWS is able to solve the empty 8×8 Hex board in under 4
minutes on modest hardware (a first player win), and is the
first program to solve the empty 5×5 Go board using posi-
tional superko rules (a first player full-board win).

2 Background
αβ pruning [Knuth and Moore, 1975] enhances the basic
minimax algorithm by using upper and lower score bounds
α and β to prune irrelevant lines of play. Iterative deepen-
ing αβ is an enhancement to the algorithm which allows it to
find wins in the minimum number of moves [Slate and Atkin,
1977]. Each iteration executes a depth-limited αβ search, and
non-terminal positions at the depth limit are evaluated by a
heuristic. The best moves found in the previous iteration are
prioritized so that strong lines of play are searched first. With
an accurate heuristic, this results in more αβ pruning, saving
computation.

Proof Number Search [Allis et al., 1994] uses proof and
disproof numbers as optimistic heuristic estimates of the re-
maining cost to complete a proof or disproof. The algorithm
constructs an in-memory proof/disproof tree by iteratively ex-
panding most promising nodes, and updating proof/disproof
numbers in the tree. PNS searches for solutions in a best-
first manner, in contrast with iterative deepening αβ. PNS
can quickly find narrow but deep solutions containing long
forced lines of play, with few branches [Kishimoto et al.,
2012]. However, this depth-seeking behavior of PNS can also
cause the algorithm to waste much computation on deep lines
of play that do not contribute to the final proof.
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Monte Carlo Tree Search [Browne et al., 2012] is a pop-
ular search framework for heuristic game play and single
agent search for optimization. The MCTS Solver extension
[Winands et al., 2008] adds minimax backpropagation of
solved positions in order to solve games. Like PNS, MCTS
incrementally builds a tree of explored nodes in memory.
However MCTS uses an empirical win rate instead of proof
numbers, to guide its move selection according to a formula
such as UCT [Kocsis and Szepesvári, 2006] or PUCT [Rosin,
2010]. MCTS balances exploitation of moves with the high-
est win rates against exploration of less visited ones. In each
iteration of MCTS, the search tree is expanded with a new
leaf node, which is evaluated using either a simulation or a
neural network evaluation. Win/loss statistics are propagated
along the path back to the root.

αβ and MCTS can be adapted to find scalar-valued out-
comes, while PNS is specialized for binary (win/loss) results.
There are techniques to efficiently specialize αβ for binary re-
sults, and PNS variants for solving scalar-valued games [Saf-
fidine and Cazenave, 2012]. For simplicity, our implementa-
tion of EWS solves binary outcome problems. Multi-outcome
problems could be solved using multiple searches or extended
bookkeeping.

The game of Go is a classic test bed for search algorithm re-
search as it is a popular game with simple rules, yet good play
requires complex strategies. In Go, the two players Black
and White take turns placing a stone of their color onto the
game board, until both players pass and the game ends. Ad-
jacent stones of the same color are part of the same block. A
block losing its last adjacent empty point is captured and its
stones are removed. Static safety is the process of recognizing
without search when points on the board can be guaranteed
to count towards one player’s score. Such domain-specific
knowledge can greatly speed up the search [Randall et al.,
2022].

Superko rules in Go prevent infinite loops during games.
Positional superko forbids repeating any previously played
board position, and is a commonly used ruleset by Go players.
In situational superko, the player to move also has to match
in order to repeat a position. Japanese style Go rules address
only restricted types of ko, and declare the game as no-result
in more complex cases of repetition. Positional or situational
superko rules make solving Go more challenging due to the
Graph History Interaction (GHI) problem [Campbell, 1985].
The game history must be considered, which makes it more
difficult to reuse previously solved positions. Previous work
in solving Go by van der Werf et al. [van der Werf et al.,
2003] [van der Werf and Winands, 2009] used a version of
Japanese rules. In their MIGOS program, using situational
superko instead of Japanese style rules increased the time for
solving 4×4 Go from 14.8 seconds to 1.1 hours, more than
two orders of magnitude.

The game of Hex is played on a rhombus board with hexag-
onal cells. As in Go, two players Black and White take turns
placing their stones. The goal of the first player (Black) is to
connect the top of the board to the bottom using their stones,
and the second player (White) tries to connect the left edge to
the right edge. Hex has been solved up to the 10×10 board
using a Depth-First PNS algorithm (DFPN) [Nagai, 2002],
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Figure 1: Basic diagram of the structure of Expected Work Search.

with many Hex specific improvements, in 63 days of parallel
computation [Pawlewicz and Hayward, 2013].

3 Expected Work Search
EWS uses a MCTS-like framework for search. It is designed
to minimize a new notion of Expected Work (EW), in contrast
to algorithms with move selection formulas such as UCT. Fig-
ure 1 shows the stages of an iteration of EWS: Selection, Ex-
pansion, and Backpropagation. EWS uses a negamax formu-
lation with wins and losses defined from the point of view of
the player to move.

As in MCTS Solver, repeating these stages grows a search
tree of nodes which represent intermediate positions until a
complete winning strategy is found for the initial position.
The selection stage traverses the search tree to choose a leaf
node X for expansion. Expansion adds all non-terminal chil-
dren of X to the search tree and evaluates them (for example
by simulation) to initialize their win rate and Expected Work
estimates. Backpropagation updates the proofs, child order-
ing, win rates, and Expected Work of all nodes on the path
back to the root.

EWS requires the following domain-specific functions:
getting all legal moves, making and undoing moves, and rec-
ognizing terminal positions and their win/loss outcomes. Ev-
erything else in the EWS algorithm was designed to be do-
main agnostic so that it can be easily applied to many differ-
ent problems.

3.1 Expected Work
EWS computes the Expected Work of positions to estimate
how much computation they will take to solve. The Expected
Work of a position depends on whether it will be proven to
be winning or losing. For a winning position, only a single
winning move needs to be solved, while in a losing position
all moves must be solved. Therefore, EWS computes separate
Expected Work estimates for both cases for each position. Let
X be a position with n children C1, ..., Cn, arranged in the or-
der in which they will be searched (C1 first, then C2 etc.). Let
WR(Y ) be the estimated win rate of Y . Then the Expected
Work for losing and winning of X is defined recursively as:
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EWloss(X) :=
n∑

i=1

EWwin(Ci) (1)

EWwin(X) :=
n∑

i=1

(EWloss(Ci) ·
i−1∏
j=1

WR(Cj)) (2)

The estimated win rate of X is interpreted as the probabil-
ity that X is a win. As a base case, a leaf node in the current
tree is initialized with a EW heuristic. initialisation options
are discussed in Section 4.2.

If X is losing, then all its children must be searched and
proven to be wins for the opponent. Equation (1) defines
EWloss(X) as the sum of EWwin of its children. This cor-
responds to proof numbers in PNS AND nodes, which are
defined as the sum of child proof numbers.

If X is winning, then EWS searches its children in or-
der (first C1, then C2, etc.) until the first opponent loss
Ci is found, which proves a win for X . Equation (2) de-
fines EWwin(X) as the sum of all children’s EWloss, each
weighted by the estimated probability that the search reaches
this child while solving X . For example, suppose C1 has a
80% win rate and C2 has a 75% win rate. Then 0.8 · 0.75 =
0.6 is the estimated joint probability that neither C1 nor C2

were solved as losses for the opponent. This is the case when
C3 must still be searched, so the EW of C3 is weighted by this
probability. PNS taking the minimum proof number in OR
nodes would correspond to the special case of WR(C1) = 0,
which would make Equation 2 equal EWloss(C1), which is a
minimal child EW.

The EW computation is based on three simplifying as-
sumptions. First, that win rates correlate with the position ac-
tually being winning or losing. EWS does not prescribe how
to estimate win rates. A default option using domain-agnostic
random simulations is described in Section 4.1. Second, the
definition of Expected Work assumes that the current move
ordering among children will remain unchanged. However,
in practice EWS reorders children continually as the search
updates EW. The third assumption is that the win rates and
Expected Work of siblings are independent. This is a strong
assumption, and violated for example in a DAG. However,
our empirical tests in Section 5 demonstrate that the above
EW definition leads to an efficient search algorithm, validat-
ing the usefulness of this framework.

3.2 Selection
The pseudo code for selection can be seen in Algorithm 1,
lines 1-6. As in MCTS, the selection stage proceeds from the
root of the search tree down a path to a leaf. Unlike MCTS,
this path simply follows the first-ordered child in the tree ac-
cording to the current ordering until a leaf node is reached.
The child ordering is determined during backpropagation, as
described in Section 3.4. Once a leaf node is found, it is ex-
panded as described in Section 3.3.

As the in-memory tree is traversed, moves are made ac-
cordingly to update the current position. Each node stores
a win rate, both Expected Work values, whether it has been
expanded yet, the last move which lead to its position, and
pointers to its unsolved children.

Algorithm 1 SelectBackpropagate X: returns whether X is
solved and if so whether X is winning

1: C := X .children[0] ▷ Selection
2: Make move C.move
3: if C.expanded then
4: isSolved, isWinning = SelectBackpropagate(C)
5: else
6: isSolved, isWinning = Expand(C)
7: Undo move C.move ▷ Backpropagation
8: if isSolved and isWinning then
9: Remove C from X .children

10: if X .children is empty then
11: return true, false ▷ Solved loss
12: else if isSolved and not isWinning then
13: return true, true ▷ Solved win
14: Sort X .children with (3)
15: Update X .winRate
16: Update X .expectedWorkLoss with (1)
17: Update X .expectedWorkWin with (2)
18: return false, false ▷ Unsolved

3.3 Expansion
When the selection stage reaches a leaf node for position p,
it is expanded according to Algorithm 2. Expand returns two
booleans: whether the node was solved, and if so whether p
was winning. All legal moves of the position being expanded
are checked to see if they lead to a terminal position. If a
move leads to a terminal position which is winning for the
player to move in p, then the node is solved as a win and the
function returns. If a move leads to a losing terminal position,
no new node is added. If p has no unsolved children left, it is
solved as a loss, otherwise p remains unsolved.

For a move which leads to a non-terminal position, a new
leaf node is added as a child of p’s node, and its win rate and
Expected Work values are initialized by heuristics. This is
further described in Sections 4.1 and 4.2.

Algorithm 2 Expand X: returns whether X is solved and if
so whether X is winning

1: X .expanded := true
2: for all legal moves m do
3: if m is a terminal winning move for X then
4: return true, true ▷ Solved win
5: else if m is not a terminal losing move for X then
6: Create node C
7: C.expanded = false
8: C.move := m
9: Evaluate C.winRate

10: Evaluate C.expectedWorkLoss
11: Evaluate C.expectedWorkWin
12: Add C to X .children
13: if X .children is empty then
14: return true, false ▷ Solved loss
15: else
16: return false, false ▷ Unsolved
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3.4 Backpropagation
Lines 7-18 in Algorithm 1 show the pseudo code for EWS
backprogagation. After the selected child C of node X has
finished expanding or backpropagating (lines 4, 6), backprop-
agation for X proceeds as follows: If C was solved as a win,
it is losing for X and is removed from the (unsolved) chil-
dren. If X has no more unsolved children, its result is a
solved losing position. If C was solved as a loss, through
backpropagation X becomes a solved win.

For X that remain unsolved, its unsolved children are re-
sorted in ascending order according to the ordering:

A < B

⇐⇒
EWloss(A)/(1−WR(A))<EWloss(B)/(1−WR(B))

(3)

Here, A and B are any two children of X . This child or-
dering minimizes the EW of nodes, a formal proof of this is
provided in the appendix of our arXiv submission [Randall
et al., 2024]. EWS achieves exploration by optimistic initial-
isation of EW, as described in Section 4.2. Move ordering
assumes that the node is winning, as move ordering is irrel-
evant for losing nodes since every child needs to be solved.
Therefore EWloss is used for the ordering formula.

The win rate of X is updated after its children are re-
ordered. Details are given in Section 4.1. Expected Work
values are updated according to Equations (1) and (2). Fi-
nally, the function return indicates that X is still unsolved.

4 Implementation
This section describes choices made for our first implemen-
tation of EWS within the algorithm framework of Section 3.
2

4.1 Win Rate Estimation
Our implementation of EWS performs win rate estimation
with random simulations (a.k.a. rollouts). A position is sim-
ulated by playing random moves until a terminal position
is reached, at which point the winner of that simulation is
known. Each node has win and visit counters which are up-
dated during expansion and backpropagation. Every simula-
tion increments the visit counter of all nodes along the in-tree
path chosen in the selection stage, and the win counter for
nodes of the simulation winner. The win rate of a node is
simply wins divided by visits. Wins are initialized to 1, and
visits to 2, in order to avoid win rates of exactly 0 or 1. This
is required for computing Expected Work (2) and the child
ordering relation (3).

It is possible to use other methods of win rate estimation
with EWS such as a heuristic policy to guide simulations [Sil-
ver et al., 2016], or a machine learned evaluation function
[Silver et al., 2018] [Wu et al., 2022].

4.2 Expected Work Initialisation
EWS does not use an explicit exploration term as in MCTS. It
uses optimistic initialisation [Sutton and Barto, 1998] of EW

2An minimal example implementation in Python can be found at
github.com/davidowe/EWS-Python

to achieve exploration. This corresponds to the optimistic ini-
tialisation of proof and disproof numbers in PNS [Allis et al.,
1994]. In optimistic initialisation, underestimating the EW
of new nodes leads to it growing during the initial visits. In
two otherwise similar nodes, the one with fewer visits tends
to have a smaller EW estimate and is therefore prioritized in
the search. Typically, a position’s optimistic EW initialisation
is smaller than the sum of its children’s EW.

Our implementation of EWS takes advantage of “free” in-
formation from the simulations used for win rate estimation
to also initialize the Expected Work of new nodes. EW is
initialized as follows:

EW (X) :=
m−1∑
i=1

b(Pi) (4)

where X is the new node being initialized, P1, ..., Pm are the
m positions visited during the random simulation, and b(Pi)
is the number of legal moves (the branching factor) of Pi. The
final mth position is terminal, and therefore is not included in
the sum. This initialisation method is domain agnostic, gives
information about the size of the proof tree required to solve
the node, and it reuses simulations used for win rate estima-
tion. Other plausible initialisation methods for EW include
simply initializing EW as 1, and using a learned model to
predict proof size [Wu et al., 2022].

4.3 Generic Refinements
We improve the performance of our EWS implementation
with the following three game-independent methods:

1. Transposition Reduction
2. Symmetry Reduction
3. Relevancy Zones

A transposition is an equivalent position that has already
been encountered during the search. We use a transposition
table to store the outcomes of solved positions to avoid re-
computing such positions. The transposition table is indexed
using hashes that compactly represent positions modulo the
table’s size. We use Zobrist hashing [Zobrist, 1990] to com-
pute hashes efficiently. We increase the transposition table
hit rate using enhanced transposition cutoffs [Schaeffer and
Plaat, 1996], which involves performing a 1-ply search for
existing transposition entries upon the creation of a new node.
The complete strategy for solutions found in EWS is stored
in the transposition table.

The Graph History Interaction (GHI) problem arises in
games such as Go where a position’s outcome depends on
the game history. In such domains, this problem occurs when
positions that share the same board configuration lead to dif-
ferent game outcomes. If positions with different histories
are treated as identical via a transposition, the search result
might become incorrect. To remedy this issue, we implement
the GHI solution proposed by Kishimoto et al. [Kishimoto
and Müller, 2004]. Transposition entries are simulated to en-
sure that the stored outcomes can be reached legally within
the rules of the game before they are used to replace search.
These simulations incur a memory and computational over-
head, but the savings from being able to use a transposition
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Program Av. solve
time (s)

# Faster
than EWS # Timeouts

EWS 2.32 - -
Go-Solver 22.63 31 (5.2%) 11 (1.8%)
EWS-WR 19.70 96 (16.0%) 11 (1.8%)
EWS-PS 19.58 171 (28.5%) 14 (2.3%)

Table 1: Summary statistics of EWS vs. comparison algorithms on
600 tested 6×6 Go positions.

table and re-using a proof rather than needing to rediscover it
by search makes up for the overhead.

In many domains, symmetries of positions can be used to
improve search efficiency. If a position can be mirrored or
rotated without affecting the outcome, then solving a posi-
tion means that all of its symmetrically equivalent positions
are also solved. This allows more positions to be treated as
transpositions, increasing the transposition table hit rate and
reducing the number of nodes that must be searched. We also
consider symmetries upon creation of new nodes, by omitting
any symmetrically equivalent sibling.

EWS uses relevancy zones [Shih et al., 2021] to further
reduce the number of nodes required to find proofs. Rele-
vancy zones limit the number of moves that must be consid-
ered by discarding any moves which cannot be a refutation to
a known winning strategy for the opponent. Relevancy zones
are defined for terminal positions in a domain-specific way.
The propagation to earlier positions is domain-agnostic and
is handled by EWS in the backpropagation stage. See [Shih
et al., 2021] for a detailed explanation with concrete exam-
ples of relevancy zones, and a proof of correctness.

Two other improvements are used in our implementation:
First, if the winner of a starting position is conjectured a pri-
ori, then each node’s expected win/loss outcome can be set
accordingly. This allows the search to only compute one
EW, by alternating Equations (1) and (2). This leads to an
efficiency gain. Second, if the search is observed to oscil-
late rapidly among a small number of children for the same
position, its focus can be improved using the 1 + ϵ trick
[Pawlewicz and Lew, 2006].

5 Experiments
5.1 The 6×6Go Dataset
To broadly evaluate EWS, we created dataset 6×6Go by se-
lecting 600 positions - one from each of 600 6×6 Go games -
that are likely to be encountered in a 6×6 Go proof tree. One
player is a strong heuristics-guided agent, representing the
good moves made by the winning side. The opponent plays
randomly, representing a fair sample of all legal moves which
must be analyzed for the losing side. The heuristic player
uses six Proof Cost Networks (PCN) [Wu et al., 2022] with
different training parameters. PCN are trained to predict min-
imal proof size, as opposed to the win rate used in AlphaZero
[Silver et al., 2018]. We generate 100 games with each PCN
to create a dataset with diverse lines of play. The games in
the test set last between 29 and 124 moves, with a median of

40, for a total of 26,885 positions. In each game, the earliest
position EWS was able to solve in at most 10 seconds was
used as a data point in 6×6Go. All algorithms are tested with
a 5 minute limit per position. Experiments were run on an
Intel i7-10510U CPU with 16 GB of RAM.

5.2 Go Results
To evaluate EWS, we compare it against three baselines: Go-
Solver, EWS-WR (EWS without win rate estimation), and
EWS-PS (EWS without proof size estimation). Go-Solver is
an iterative deepening αβ algorithm built on the open source
Fuego framework [Enzenberger et al., 2011]. Go-Solver is
the strongest existing Go solving program using positional
superko rules we are aware of, apart from EWS. For these
experiments, Go-Solver uses the exact same static safety Go
knowledge implementation as EWS, so it statically recog-
nizes the same wins and losses.

In EWS-WR we replace Equation (2) with EWwin :=
min(EWloss(Ci)) to take the minimum child EW instead of
a weighted average, and set all node’s WR to 0. This results
in a negamax PNS algorithm which prioritizes positions clos-
est to being solved. In EWS-PS we order children of each
node according to the UCT formula [Kocsis and Szepesvári,
2006]. This algorithm is similar to MCTS solver [Winands et
al., 2008], with minor implementation differences.

Figure 2 compares EWS against the three baselines on the
6×6Go dataset. Each scatter plot uses doubly-logarithmic
scales, with EWS solving time on the y-axis, and the other
algorithm’s solving time on the x-axis. For data points be-
low the diagonal, EWS is faster. Table 1 shows the summary
statistics of these experiments. Go-Solver has a one second
initialisation overhead, and was generally slower for harder
positions. Go-Solver’s average solving time is 9.5× larger
than the average time it took EWS to solve the same posi-
tions.

EWS-WR is a respectable solving algorithm even with-
out win rate estimation, with performance comparable to Go-
Solver. On average EWS-WR took 8.5× longer than EWS
to solve the same positions. EWS-PS was faster than EWS-
WR and Go-Solver on average, and solved the most posi-
tions faster than EWS. However, EWS-PS also exceeded the
5 minute time out period on the most positions and took 8.4×
longer than EWS on average. This experiment shows that
the performance of EWS degrades when either one of its two
main attributes is removed from the search.

Solving Small Square Go Boards
We compared EWS, EWS-WR, EWS-PS, and Go-Solver
against the state of the art by solving the empty square Go
boards of size 3 × 3 up to 5 × 5, shown in Table 2. State
of the art is represented by MIGOS, which is accepted as the
strongest previously published Go solver [van der Werf et al.,
2003] [van der Werf and Winands, 2009].

While the strongest results for MIGOS are for Japanese
style rules, it was also tested using situational superko (SSK)
rules up to the empty 4×4 board, shown in Table 2. Our
Go implementation uses positional superko rules, which dif-
fer slightly from SSK as they forbid any positional repeti-
tion regardless of the player to move. Both rulesets lead to
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(a) EWS vs. Go-Solver (b) EWS vs. EWS-WR (c) EWS vs. EWS-PS

Figure 2: Comparing EWS against Go-Solver, EWS without win rate estimation (EWS-WR), and EWS without proof size estimation (EWS-
PS). The y-axis is a log scale of the time EWS took to solve the positions in seconds, and the x-axis is the time it took the other algorithms to
solve the same positions. Data points below the diagonal dashed line took less time for EWS to solve than the comparison algorithm.

Program 3×3 Time (s) 3×3 Nodes 4×4 Time (s) 4×4 Nodes 5×5 Time (h) 5×5 Nodes

EWS 0.053 161 13.626 495,494 5.252 2,605,781,360

EWS-WR 0.074 796 40.396 1,562,718 > 24 -

EWS-PS 0.070 232 18.320 744,169 > 24 -

Go-Solver 1.299 1,628 51.522 799,607 > 24 -

MIGOS SSK < 3.3 ∼ 25,118 ∼3,960 ∼3,162,277,660 - -

Table 2: The results from solving empty n×n Go boards with EWS, EWS without win rate estimation (EWS-WR), EWS without proof size
estimation (EWS-PS) and the αβ Go-Solver program. 5×5 Time is in hours. MIGOS times and node counts are approximate. All programs
use positional superko other than MIGOS which uses situational superko. 3×3 has 8.5 komi, 4×4 has 1.5 komi, 5×5 has 24.5 komi.

Program 4×4 Time (s) 4×4 Nodes 5×5 Time (s) 5×5 Nodes 6×6 Time (h) 6×6 Nodes

EWS 0.002 283 0.253 37,034 0.422 93,963,192

Enhanced AB 0.004 1,673 3.935 698,402 > 24 -

Morat MCTS 0.035 4,644 29.669 3,554,546 > 24 -

Morat PNS 0.054 8,871 758.102 154,539,591 > 24 -

Table 3: The results from solving the empty n×n Hex board without extensive domain-specific knowledge with EWS, an enhanced αβ
program, Morat MCTS, and Morat PNS. 6×6 Time is in hours.

Program 6×6 Time (s) 6×6 Nodes 7×7 Time (s) 7×7 Nodes 8×8 Time (s) 8×8 Nodes

EWS with
knowledge 0.005 26 0.588 2,318 234.449 555,158

Table 4: The results from solving the empty n×n Hex board using domain-specific knowledge with EWS.
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GHI problems [Campbell, 1985], making them comparable
for solving.

In our experiments EWS outperforms the other tested al-
gorithms and was the only program to solve 5×5 Go, with
24.5 komi, within 24 hours. For the first time, 5×5 Go has
been solved with the positional superko ruleset, finding a full-
board first player win. We naively parallelized the programs
when solving 5×5 Go by running 6 parallel processes to
solve the positions resulting from the center opening move for
Black and the 6 symmetrically unique responses from White.
No other experiments reported here used any parallel com-
puting.

5.3 Hex
To show the generality of EWS, we also evaluated it on the
game of Hex. Table 3 shows the results of solving empty
n×n Hex boards using little Hex-specific knowledge. We
compare EWS against the publicly available Morat program
[Ewalds, 2012] which includes PNS and MCTS algorithms to
play and solve Hex. Morat PNS implements the Depth First
Proof Number search variant of PNS, along with refinements
such as the 1 + ϵ trick [Pawlewicz and Lew, 2006]. We also
implemented an enhanced αβ algorithm to solve Hex. All
programs tested in the results shown in Table 3 have the same
limited Hex specific knowledge.

The results in Table 3 show that EWS is faster and creates
smaller proof trees than any of the other tested algorithms.
For solving 5×5 Hex, EWS was 15.5× faster than enhanced
αβ, 117.3× faster than Morat MCTS, and 2996.5× faster
than Morat PNS. EWS was the only program to solve 6×6
Hex in the 24 hour time limit allotted.

6×6 Hex is a significantly smaller problem than the largest
solved board size, 10×10 Hex [Pawlewicz and Hayward,
2013]. To show the importance of domain-specific knowl-
edge in Hex, we implemented Hex specific knowledge for
EWS as shown in Table 4: basic virtual connections which
identify terminal positions earlier, and fill-in / inferior cell
patterns which prune dominated moves [Hayward et al.,
2004].

Our results emphasize the importance of domain-specific
knowledge for solving large Hex problems. In Table 3, EWS
explored over 93 million nodes to solve 6×6 Hex with no do-
main knowledge. With basic Hex-specific knowledge, EWS
takes 26 nodes, and solves 8×8 Hex in less than 4 minutes.
Compared to [Pawlewicz and Hayward, 2013], our current
Hex knowledge implementation lacks the more complicated
virtual connections and fill-in / inferior cell patterns among
other techniques, limiting our ability to efficiently solve larger
Hex boards.

6 Related Work
The PN-MCTS algorithm [Doe et al., 2022] is a game playing
program which has shown favourable results compared to un-
enhanced MCTS on a number of games. PN-MCTS is MCTS
with a modified UCT formula that uses proof and disproof
numbers to help guide move selection. Proof and disproof
numbers are used to rank children, which is used in a normal-
ized term added to the UCT formula which influences move

selection. All information in the proof and disproof numbers
other than the relative ordering of children’s proof numbers is
discarded.

A major difference from EWS is that PN-MCTS keeps
its win rate and proof number-based heuristics separate, and
only combines them through adding terms to UCT during
move selection. In contrast, EW integrates win rate and proof
number-like information into a single Expected Work esti-
mate, which is computed recursively. EWS is also able to
consider the estimated proof sizes of positions rather than
just considering children’s relative ordering. Another main
difference between PN-MCTS and EWS is that PN-MCTS
was designed to be a game-playing program, while EWS is a
game solver. Since the published PN-MCTS algorithm is not
currently able to solve games, we cannot make any empirical
comparisons against this work.

Product propagation [Saffidine and Cazenave, 2013] modi-
fies PNS by backing up heuristic estimates of the likelihood of
winning rather than proof and disproof numbers. This modifi-
cation replaces the normal proof size estimation which occurs
in PNS, with the goal of achieving a stronger heuristic for the
search. Product propagation search was empirically shown to
outperform αβ search and PNS in some of the games tested.

Previous work by van der Werf et al. on solving Go has
solved rectangular boards up to 5×6 and 4×7 [van der Werf et
al., 2003] [van der Werf and Winands, 2009] using Japanese
style rules. Their MIGOS solver uses iterative deepening
αβ with handcrafted heuristics and Go-specific knowledge.
Japanese style rules were used in order to avoid the Graph
History Interaction problem [Campbell, 1985]. With situa-
tional superko, MIGOS was able to solve up to the empty
4×4 board.

The first computer solution of 7×7 Hex by Hayward et al.
relied on advances in the Hex-specific knowledge of virtual
connections and move domination [Hayward et al., 2004].
Improvements on inferior cell analysis and pattern decompo-
sition allowed 8×8 Hex to be solved [Henderson et al., 2009].
Increasing the strength of virtual connections with captured
cell knowledge and switching to a DFPN algorithm allowed
solving 9×9 Hex [Arneson et al., 2010]. Finally, a large-
scale parallel computation solved 10×10 Hex [Pawlewicz
and Hayward, 2013].

7 Conclusions and Future Work

EWS successfully combines win rate and proof size estima-
tion in an efficient search algorithm. Our experiments show
that EWS can outperform αβ, PNS, and MCTS based pro-
grams in Go and Hex. We present the new result of solving
5×5 Go with positional superko, and demonstrate that EWS
solves 8×8 Hex when given basic Hex-specific knowledge.

For future work, we plan to test machined learned evalu-
ation functions for win rate estimation [Silver et al., 2016]
[Silver et al., 2018] and EW initialisation [Wu et al., 2022].
We will continue to develop our Hex specific knowledge with
the goal of obtaining new results in solving Hex. Finally, we
hope to investigate translating EW into a concrete prediction
of the resources it will take to solve problems.
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