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Abstract

For a position and a player with a winning move, the pass-value is
the largest number of free moves the player can allow the opponent so
that after these move(s) the player still has a winning move. For a cell-
coloring game such as Hex, the pass-value is equivalently the smallest
number of cells the opponent needs to color in order to reach a position
where the opponent has a winning move. A move is good if it increases
the pass-value. HyperHex is the hypergraph generalization of Hex:
each player has a list of winsets, and wins by coloring all cells of any
of her winsets. No-draw HyperHex is the maker-breaker restriction of
HyperHex: each player’s winset list contains every minimal set that
intersects all of the other player’s winsets (so draws are not possible).
For no-draw HyperHex, we consider two good-move proverbs: your
opponent’s good move is your good move, and it’s never too late for
a good move.

1 Introduction

At the 2011 Banff International Research Station Workshop on Combinato-
rial Game Theory, I asked professional 9-dan Ziang Zhujiu [Jujo] about the
Go proverb your opponent’s good move is your good move [14]. His instant
response was “it’s not always true”, and of course he is right. For example,
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in Figure 1 each player’s winning move (in the opponent’s territory) is the
opponent’s losing move, so no move is good for both a player and their
opponent.

Figure 1: A Go position with no move that wins for both players.

This paper is about good moves in no-draw HyperHex, a game that
generalizes Hex. We consider the Go proverb above, and the general proverb
it’s never too late, which when applied to games could be expanded as it’s

never too late for a good move.

2 No-draw HyperHex

In 1942 Piet Hein invented Polygon, the classic alternate-turn two-player
connection game now known as Hex [5]. John Nash independently invented
the same game, and in 1949 described it to David Gale, who built a board
that was soon in frequent use in Princeton’s Fine Hall [8, 7]. Later John
Milnor and independently Claude Shannon [8] and independently Charles
Titus [12, 13] invented Y, and Shannon created his eponymous (switching)
game [6]. Y and the Shannon game each generalize Hex. For more on these
games, see [2] or [4].

HyperHex is a hypergraph generalization of Hex, Y and the Shannon
game. The board is a finite set of cells; each player has a collection of winning
cell sets, or winsets; on each turn, a player colors an uncolored cell; a player
wins by coloring all cells of any one of their winsets. Draws are possible; for
example, if the board is {1,2,3,4} and black and white have respective winsets
{ {1,2}, {4} } and { {1,3} }, then the game move sequence (black:1, white:2,
black:3, white:4) fills the board and yields a draw, since neither player wins.

No-draw HyperHex is the maker-breaker restriction of HyperHex. In a
maker-breaker game, one player (maker) tries to establish some property —
say, form a certain connection — and the other player (breaker) tries to
prevent it [3]. Maker-breaker games apparently evolved from the Shannon
game, in which maker tries to connect two terminal nodes, and breaker tries
to thwart this connection.
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For a HyperHex game not to end in a draw, it suffices that each possible
coloring of all the board cells yields a colored winset for exactly one player,
namely that the game is maker-breaker. To satisfy this condition, call the
two players M and B, and select any non-empty list of non-empty winsets
for M. Remove from M’s list any winset that properly contains some other
winset (such containing winsets are redundant), and let B’s list consist of
every minimal cell subset that intersect all of M’s winsets. For example, if
the board is {1,2,3,4} and M’s list is { {1,2}, {4} } then B’s list is { {1,4},
{2,4} }.

A hypergraph is a set of hyperedges (subsets) of a ground set, so in hyper-
graph terms the winset lists are hypergraphs defined on the same ground set
(the set of board cells), M’s hypergraph is a clutter (no hyperedge properly
contains another), and B’s hypergraph is the blocker, or transversal (the set
of all hyperedges that intersect all of the other hypergraph’s hyperedges) of
M’s hypergraph. The blocker of a blocker of a clutter is the original clutter
(see Corollary 2 of Chapter 2 in Hypergraphs by Claude Berge [1]), so in
no-draw HyperHex the roles of maker and breaker are interchangeable. So
no-draw HyperHex is HyperHex on a clutter and its blocker [9].

Here are some no-draw HyperHex examples. Suppose the cell set is
{1,2,3,4} and black’s winset collection is { {1,3}, {2,3}, {2,4} }. Then
white’s winset collection is { {1,2}, {2,3}, {3,4} }. In Hex, a player wins
by connecting their two borders. This HyperHex example is equivalent to
Hex on the board in Figure 2.

1
2

3
4

Figure 2: A Hex board.

Or suppose the cell set is {1,2,3} and black’s winset collection is { {1,2},
{1,3}, {2,3} }. Then white’s is the same. In Y, a player wins by connecting
all three borders. This HyperHex example is equivalent to Y on the board
in Figure 3.

Or suppose the cell set is {1,2,3,4,5,6} and black’s winset collection is {
{1,4}, {1,5}, {2,5} {2,6}, {3,4}, {3,6} }. Then white’s is { {1,2,3}, {4,5,6},
{1,2,4,6}, {1,3,5,6}, {2,3,4,5} }. In the Shannon game, black wins by joining
two specified terminal nodes, otherwise white wins. This HyperHex example
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Figure 3: A Y board.

is equivalent to the Shannon game on the network in Figure 4.

1 2 3

4 5 6

Figure 4: A Shannon board.

3 Pass-value and good moves

For a player P and a HyperHex position H, (H, P ) is the game state starting
from H in which P moves next. For P and an H with an empty cell c,
H +P (c) is the position obtained from H by P -coloring c. P is the opponent
of P .

In HyperHex, P -coloring a cell — or uncoloring a P -colored cell — is never
disadvantageous for P , since a winning P -strategy can always be modified
to accomodate such a change:

Observation 1 For a player P and a HyperHex position H with empty cell

c, and for X = P or P , if P wins (H, X) then P wins (H + P (c), X).

By Observation 1, if P has a second-player win strategy for H then P has
a first-player win strategy for H, so each no-draw HyperHex position has one
of three outcome-values: neutral if each player has a first-player win, P -win

if P has a second-player win, and P -win if P has a second-player win. See
Figure 5.

We want a notion of “good move” that is more general than “winning
move”, so we introduce the notion of pass-value. A similar concept has been
studied in Go [10].
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Figure 5: Hex positions with outcome-values black, white, and neutral.

Informally, the pass-value of a position is the number of times a player
can pass — make no move but allow the opponent a move — and still leave a
winning position. Formally, for a player P and a no-draw HyperHex position
H, define the pass-value νP (H) as ∞ if a P -winset is already P -colored;
otherwise, if P has a winning first-player strategy then νP (H) is the largest
number of empty cells t such that P still has a first-player winning strategy
after any t cells have been P -colored; otherwise νP (H) is − νP (H). Notice
that, for all P and H, νP (H) = − νP (H).

For example, the respective black pass-values of the positions in Figure 5
are (from left) 1, −1, and 0. For a neutral position, each player’s pass-value
is 0; for a P -win position, P ’s pass-value is at least 1.

A move is good if it increases the player’s pass-value, and wasted if it does
not change it. By Observation 1, every no-draw HyperHex move is good or
wasted. A move can increase the pass-value by more than one. For example,
see Figure 6. Generalizing this example, it is easy to see that for each n ≥ 4
there is an n×n position in which a move changes the pass-value from 0 to
n − 1.

Figure 6: Left: black pass-value 0. Right: black pass-value 2.

4 It’s never too late for a good move

In no-draw HyperHex, for a position with finite pass-value, is a good move
always available?
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If a player is ahead — has positive pass-value, i.e. a 2nd-player win —
then sometimes but not always. For example, in Figure 7 each position has
black pass-value 1. In the left position, black has good moves. But consider
the right position. If black passes twice, white can color the top two marked
cells and then win by playing in either of the other two other marked cells.
A similar strategy holds for the four unmarked cells. Thus each black move
from this position leaves one of these two white strategies intact, and so
leaves the black pass-value at 1. So black has no good move.

Figure 7: Left: two black-good moves. Right: no black-good moves.

But if the player is not ahead, then it’s never too late for a good move.
This follows almost immediately from the definition of pass-value.

Observation 2 For a player P and any no-draw HyperHex position H with

νP (H) = t ≤ 0, P has a good move.

Proof. For k ≥ 1, a k-strategy is a first-player strategy in which k cells
are colored on the first move and one cell is colored on each successive move.

Assume P and H are as stated. Thus P has a winning (1−t)-strategy S

whose first move is to a set C of 1−t ≥ 1 cells. Thus, for any cell c in C and
the position H ′ = H+P (c), the −t-strategy obtained from S by removing the
cell c from the first move is a winning strategy, so νP (H ′) ≥ t+1 = νP (H)+1,
and we are done. 2

By Observation 2, white has at least one good move in each position of
Figure 7. We leave it as an exercise to the reader to find all such moves.

5 Your opponent’s good move is your good

move

In Hex as in Go, it’s not always true that your opponent’s good move is your

good move. In Figure 8 both players have five good moves and three moves
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are good for both players, but in Figure 9 — found by Jonatan Rydh [11]
— both players have two good moves but no move is good for both players.
The next theorem gives some conditions where some move is good for both
players.

Figure 8: Dots show winning moves. Three moves win for both players.

Figure 9: No move wins for both players.

Theorem 1 A neutral no-draw HyperHex position H with t empty cells has

a move that is good for both players if

• either player has only one winning move, or

• 1 ≤ t ≤ 5, or

• 1 ≤ t ≤ 7 and each player has only two winning moves.

Proof. In a neutral position, a move is good if and only if it is winning,
so it suffices to find moves that are winning for both players.

Let c1, . . . , ct be the empty cells of H. Let WP and WP be the respective
sets of winning moves for P and P .

Consider the first part of the theorem. Suppose P has only one winning
move, say to cell c1. Then P has no winning moves in H + P (c1), so c1 wins
for P , and we are done.

Consider the second part of the theorem. P is neutral so t ≥ 1. Assume
t ≤ 5. We are done by the first part if WP or WP has size one, so assume
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each set has size at least two, so t ≥ 4. Since t ≤ 5, one set — say WP —
has size two. Relabel cells if necessary so that WP = {c1, c2}.

Argue by contradiction: suppose WP contains no cell of WP . Then c1 does
not win for P , so P has a winning move x in H +P (c1). By Observation 1, x

is also P -winning in H, so x = c2. Similarly, c1 is P ’s unique winning move
in H + P (c2).

First assume t = 4. P has a winning reply for any P -move in H +P (c1)+
P (c2), so {c2, c3} and {c2, c4} are P -winsets. Similarly, {c1, c3} and {c1, c4}
are P -winsets. Thus c3 wins for P in H, (on the next move P can color one
of c1, c2), contradiction (WP = {c1, c2}).

Next assume t = 5. Again, P has a winning reply for any P -move in
H + P (c1) + P (c2); relabel c3, c4, c5 if necessary so that {c2, c3} and {c2, c4}
are P -winsets. Similarly, for at least two cells j, k in c3, c4, c5, {c1, j} and
{c1, k} are P -winsets. So, for some z in {j, k}, {c1, z} and {c2, z} are P -
winsets, so z wins for P in H, contradiction. Thus the second part of the
theorem holds.

Next consider the third part. Again, P is neutral so t ≥ 1. If t ≤ 5 we
are done, so t = 6 or 7. Argue by contradiction: assume that WP and WP

have no cell in common, say WP = {c1, c2} and WP = {c3, c4}.
If P first colors c1 and then P colors c3 then P has a winning move;

similarly, if P first colors c3 and then P colors c1 then P has a winning move.
So H∗ = H + P (c1) + P (c3) is neutral and has at most 5 empty cells, so —
by the second part — some empty cw wins H∗ for both players.

Notice that cw 6= c2: otherwise, c2 wins for P in H∗, but also c1 wins for
P in H ′ = H + P (c2), so c3 does not win for P in H ′ + P (c1), so P wins
H∗ + P (c2), contradiction. Similarly, cw 6= c4.

Similarly, some cx wins for both players in H + P (c2) + P (c3), some cy

wins for both players in H + P (c1) + P (c4), some cz wins for both players in
H + P (c2) + P (c4), and none of cw, cx, cy, cz are in {c1, c2, c3, c4}.

Since t ≤ 7, at least two of cw, cx, cy, cz are equal, say cw = cx. Then P

has no winning move in H + P (c1) + P (c3) + P (cw), and no winning move in
H +P (c2)+P (c3)+P (cx = cw), so no winning move in H +P (cw) (the only
possible winning replies would be c1 or c2, but in each case P counters with
c3), so cw wins for P in H, so cw (not in {c1, . . . , c4}) is in WP , contradiction,
and we are done. 2

Jonatan Rydh’s example in Figure 9 shows that the third part of the
theorem cannot be strengthened in terms of t. Here is a 6-cell no-draw
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HyperHex example that shows that the second part of the theorem cannot be
strengthened: black’s winsets are {1,3,4}, {1,3,6}, {1,4,5}, {1,5,6}, {2,3,4},
{2,3,5}, {2,4,6}, {2,5,6}; white’s winsets are {1,2}, {1,3,6}, {1,4,5}, {2,3,5},
{2,4,6}, {3,4,5}, {3,4,6}, {3,5,6}, {4,5,6}. We leave it as an exercise for the
reader to verify that the sets of winning opening moves for black and white
are {1,2} and {3,4,5,6} respectively.

We close with an open problem. Among all neutral no-draw HyperHex
positions with t empty cells, w1 that win for one player, w2 that win for the
other, and no cell that wins for both, what is the smallest possible value of
t? We have shown that there is no such t if w1 = 1 or w2 = 1, and that t = 6
if w1 = w2 = 2.
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