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Abstract

In this work two classes of graphs are Introduced. A graph 1s weakly
triangulated If nelther the graph nor its complement contaln a chordiess cycle
with five or more vertices as an Induced subgraph. A graph is murky if neither
the graph nor its complement contaln the chordless cycle with five vertices or the
chordless path with slx vertleces as an induced subgraph. The major results of
this thesis are theorems corcerning these two classes of graphs. In particular,

weakly triangulated graphs and murky graphs are perfect.



Resume

Dans ce travall on presente deux classes de graphes. Un graphe est appele
falblement trlangule si ni le graphe nil son complément n’admettent de cycle sans
corde de clng sommets ou plus comme sous-graphe indult. Un graphe est appele
troubl€ st n! le graphe ni son complément n'admettent de cycle sans corde de clng
sommets ou de chemln sans éorde de six sommets comme sous-graphe induit. Les
reésultats les plus Importants dans cette thése sont des théorémes qul concernent
ces deux classes de graphes. En barticuller, les graphes falblement trlangules et

les graphes troublés sont des graphes parfalts.



Preface

The thesis consists of four chapters.

Chapter 1 is an overview of the results of the thesis. A perspective of perfect graph
theory is presented which motivates the study of weakly triangulated graphs and murky

graphs.

Chapter 2 is a brief description of the background of the thesis, namely perfect
graph theory. The first section of the chapter is a description of basic definitions and
notations of general graph theory. The second section is a brief outline of selected

results in perfect graph theory.

Chapter 3 is a collection of results on weakly triangulated graphs. Included are an
examination of the relationship between weakly triangulated graphs and star cutsets,
and a proof that weakly triangulated graphs are perfect. The chapter also includes

algorithms which solve certain optimization problems for weakly triangulated graphs.

Chapter 4 is a collection of results on murky graphs. The highlight of this chapter
is a proof that murky graphs are perfect. The proof involves an examination of
properties of unbreakable murky graphs; the chapter concludes with 2 characterization

of such graphs.

Unless otherwise stated, the titled theorems in this thesis are the work of the

author.
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Chapter 1

Overview

A cligue is a set of pairwise adjacent vertices in a graph. The cligue number of a
graph is the number of vertices in a largest clique. The chromatic number of a graph is
the least number of colours needed to colour the vertices, so that adjacent vertices
receive different colours. Note that the chromatic number of a graph must be at least as
large as the cligue number. Claude Berge defined a graph & to be perfect if, for each

induced subgraph H of &, the chromatic number of H is equal to the clique number of

H.

A graph is minimal imperfect if it is not perfect and yet every proper induced
subgraph is perfect. It is an easy exercise to check that odd chordiess c¢ycles with at
least flve vertices are minimal imperfect; it is only a little more difficult to show that the
complements of such chordless cycles are also minimal imperfect. Are there any obher
minimal imperfect graphs? The celebrated Strong Perfect Graph Conjecture , posed by

Berge in 1960, asserts that the answer to this question is "no”:

The SPGC. A graph is perfect if and only if neither the graph nor its complement

contains an odd chordless cycle with five or more vertices.

As early attempts to resolve the SPGC were unsuccessful, Berge posed a second
conjecture (which, since it is implied by the first, was originally known as the Weak

Perfect Graph Conjecture ):
The WPGC. A graph is perfect if and only if its complement is perfect.

The WPGC was proved by Lovdsz (see [1972a] and [1972b]), and is now known as

the Perfect Graph Theorem. The SPGC is still open. The SPGC has been the primary



motlvation behind most of the research in perfect graph theory to this date.

We call a graph Berge if neither the graph nor its complement contains an odd
chordless cycle with five or more vertices. The SPGC asserts that a graph is perfect if
and only if it is Berge. This wording of the SPGC suggests one approach to
investigating the conjecture: consider particular classes of Berge graphs, and check to see

whether or not the graphs in these classes are perfect.

One such class is the class of friangulated graphs, also known as chordal graphs,
defined as those graphs in which every eycle with four or more vertices has a chord. Let
Cp represent the chordless cycle with & vertices, and P, the chordless path with k
vertices. Let G represent the complement of the graph G. To see that triangulated
graphs are Berge, note that by deflnition, triangulated graphs do not contain €} as an
induced subgraph, for & > 4. Also, €, is an induced subgraph of 135, and Fs is an
induced subgraph of ., for J 2 6; thus triangulated graphs do not contain 51- as an
induced subgraph, for § > 6. Pinally, since 'y is self-complementary, triangulated
graphs do not contain C s @s an induced subgraph. To summarize, triangulated graphs
do not contain C}, for k& > 4, nor C'_j, for j > 5, as an induced subgraph. Thus

triangulated graphs are Berge.

In 1960 Berge showed that triangulated graphs are perfect; thus triangulated
graphs have been known to be perfect almost since the beginning of the history of
perfect graph theory. Indeed, Berge's realization that both triangulated graphs and
complements of triangulated graphs are perfect (see Hajnal and Surzinyi {1958]) was part

of the motivation that led him to pose the SPGC and the WPGC.

Another example of a class of Berge graphs is the class of P,-free graphs, defined as

those graphs that do not contain P, the chordless path with four vertices, as an induced



subgraph. Since every OJ- contains PJ;; as an induced subgraph, P-free graphs do not
contain Cy, for k& > 5, as an induced subgraph. Also, since P, is self-complementary,
Py iree graphs do not contain &, for & > 5, as an induced subgraph. Thus P,-free

graphs are Berge. Seinsche [1974] proved that P,-free graphs are perfect.

- The main contribution of this thesis is the introduction of two new classes of Berge
graphs, together with proofs that such graphs are perfect. In light of the SPGC, it is
natural to consider classes of Berge graphs defined in terms of forbidden induced
subgraphs, and in terms of chordless cycles and complements of chordless cycles. In
light of the Perfect Graph Theorem (formerly the WPGCO), it is natural to consider
"self-complementary” classes of Berge graphs, i.e. classes of Berge graphs that are closed
under complementation. (For example, €, is not triangulated, whereas 54 is; thus the
class of triangulated graphs is not self-complementary. On the other hand, if a graph is
Pifree, then so is its complement; thus the eclass of Pyfree graphs is self-
complementary.) Recalil that a graph is triangulated (if and) only if it does not contain
Cp,for k > 4, nor C;, for § > 5 as an induced subgraph. The two aforementioned
criteria for selecting a “natural” class of Berge graphs suggest the following
generalization of triangulated graphs: define a graph to be weakly triangulated if the
graph does not contain C; or C’Hk, for K > 5, as an induced subgraph. Note that the
class of weakly triangulated graphs contains all triangulated graplhs, all complements of

triangulated graphs, and all P,-free graphs.

The second class of Berge graphs introduced in this thesis also contains all P-free
graphs (but not all triangulated graphs). Call a graph murky if it contains no ¢ 5 Fgor
Fs as an induced subgraph. Interest in the class of murky graphs was partly motivated

by Hodng’s study of the class of graphs that contain no Cj, P; or P as an induced
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subgraph (see Hodng [1983], and Chvidtal, Hodng, Mahadev and De Werra [to appear]).

How can one prove that all graphs in a given class are perfect? One method is to
look for some structural property exhibited by all graphs in the class, and then show
that no graph with the property can be minimal imperfect. Of particular interess are
structural attributes that lead to a decomposition of the graph. For example, suppose
that a graph G with vertex set V' has a cligue cutset, that is, a set of vertices ¢ such
that ' is a clique, and removal of C leaves a disconnected graph. Let A be any set of
vertices that induces a component of G — C, and let B be the rest of the vertices of &
(ie. B =V —A — ). Then it is a simple exercise to show that G is perfect if the
subgraphs induced by A{ JC and B |JC are perfect: take any two respective minimum
colourings of these two graphs, and identify the colours ‘glong the clique C. Thus a
graph with a clique cutset may be decomposed into two smaller graphs, each an induced
" subgraph of the original graph, in such a way that the original graph is perfect if the
two smaller graphs are perfect. This implies that a graph with a cligue cutset cannot be
minimal imperfect. Dirac [1961] proved that every triangulated graph is either a

complete graph or else has a clique cutses. Thus triangulated graphs are perfect.

Another structural property of a graph that leads to a decomposition is a
homogeneous set, defined as a subset H of at least two and not all of the vertices of the
graph, such that every vertex not in A is adjacent either to all or to none of the vertices
of . From a result due to Lovdsz (see [1972a]) it follows that if a graph G has a
homogeneous set H, and if H and the graph obtained from G by deleting all but one
vertex of H are both perfect, then G is perfect. (Note that both of the smaller graphs
are induced subgraphs of the original graph.) Thus a graph with si homogeneous set

cannot be minimal imperfecs.
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Seinsche [1974] proved that every P,-free graph with at least two vertices either is
disconnected, or else its complement is disconnected. From this it foilows that every P,
free graph with at least three vertices has a homogeneous set. ‘Thus P,-free graphs are
perfect. (Although P,f{ree graphs and homogeneous sets are intimately related, the
conclusion that P,-free graphs are perfect can be reached without using homogeneous
sets. It is easy to prove that if a graph or its complement is disconnected, then the

graph is not minimal imperfect.)

An attribute of a graph that generalizes both a clique cutset and a Lhomogeneous set
is a star culset, deflned as a set ¢ of vertices of a graph @, such that some vertex in ¢
is adjacent to all remaining vertices in €', and such that @ — ¢ is disconnected. The
notion of a star cutset was introduced by Chvidtal, with the aim of unifying several
structural properties associated with decompositions. Let ¢ be %L star cutset of a graph
G, with vertex v in C' adjacent to all vertices of ¢ — v, and let A be 2 component of
G - (', and B the vertices of G — ¢ — A. Chvdtal proved that G is perfect if & — v
and the subgraphs induced by A UC’ and BUO are perfect; he also proved the
analogous decomposition result for the case in which the complement of a graph has a
star cutset. It follows that neither a minimal imperfect graph nor its complement can

have a star cutset.

As cligue cutsets are associated wij;h triangulated graphs, and homogenecus seis
with P,-free graphs, one might ask whether there is a class of graphs associated with star
cutsets. Since a star cutset is a generalization of both a cligue cutset and a homogeneous
set (see Chvdtal [1985a]), such a class of graphs would include triangulated graphs and
Pytree graphs. In fact, there is such a class of graphs, namely weakly triangulated

graphs. In Chapter 3 we prove that if a graph is weakly triangulated and has at least



three vertices, then either the graph or its complement has a star cutset. Thus weakly
triangulated graphs are perfect. Also, if a graph is not weakly triangulated, then the
graph has some induced (not necessarily proper) subgraph (namely, Cy or C; with & >
5) such that neither the induced subgraph nor its complement has a star cutset; thus

star cutsets and weakly triangulated graphs are intimately related.

The star cutset decomposition can be used as the starting point in attempting %o
prove that other classes of Berge graphs, besides weakly triangulated graphs, are perfect.
A graph is called unbreakable if neither the graph nor its complement has a star cutset.
Minimal imperfect graphs are unbreakable; thus, in order to show that the graphs of a
' particular class of Berge graphs are perfect, it suffices to show that the unbreakable
graphs of the class are perfect. What do unbreakable Berge graphs look like? What
properties do they have? How do chordless cycles {of even length) and complements of
such c¢ycles intersect in unbreakab}e :Berge graphs? These questions motivate our proof
that murky graphs are perfect; this is the main result of Chapter 4. As a postseript, we

include a characterization of unbreakable murky graphs,

One reason perfect graphs are interesting is that there are certain optimization
problems which are NP-complete for arbitrary graphs, but for which there exist
algorithms which run in polynomial time if the input graph is perfect. A stable sef of a
graph is a set of pairwise non-adjacent vertices of a graph: the stability number is the
number of vertices in a largest stable set. The cligue cover number of a graph is the
least number of cliques needed to cover the vertices. Note that the stability number of a
graph G is equal to the clique number of G ; the clique cover number of @ 1s egqual to
the chromatic number of G . Grotschel, Lovdsz, and Schrijver [1984] described

algorithms that solve the problems of determining the clique number, stability number,
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chromatic number and clique cover number (and even the weighted versions of these
problems) in polynomial time for perfect graphs. Their powerful algorithms are based on
the ellipsoid method of linear programming, and on previous work of Lovdsz [1979]
concerning Shannon’s capacity of a graph. Given the non-transparent nature of these
results, it is of interest to look for simpler algorithms, especially when considering
particular classes of perfect graphs. One contribution of this thesis is the presentation of
simple combinatorial algorithms which exploit the structure of weakly triangulated
graphs to solve the four aforementioned optimization problems {and also the weighted
versions of these problems) for the class of weakly triangulated graphs. We have been
unable to find analogous algorithms which solve these problems for the class of murky

graphs.



Chapter 2
Background
The first section of this chapter is an introduction to the terminology used in the
thesis; other definitions will be introduced later as needed. The second section is a brief

outline of selected results in perfect graph theory.

2.1 Definitions and Notation

A graph consists of a finite non-empty set of wvertices, together with a finite set of
edges, or unordered pairs of distinct vertices. If two vertices are in some edge of &
graph, then the vertices are said to be adjacent, otherwise they are non-adjacent. We
use the terms "sees” and "misses” as synonyms for adjacency and non-adjacency
respectively; thus "a sees b and misses ¢ ” is equivalent to "a is adjacent to b, but not

to¢c”.

A verteX is called a neighbour of another vertex if the two vertices are ad jacent.
The neighbourhood of a vertex z in a graph G, denoted N{(z), is the set of all
neighbours of 2 in & ; the non-neighbourhood of z, denoted M (z ), is the set of all non-

neighboursof z in &G — z.

If S is a subset of the vertices of a graph @, then the subgraph of G induced by S,
denoted Gy, is the graph with vertex set S, whose edges are precisely those edges of &
that consist of two vertices of 5. An induced subgraph of G is a subgraph induced by

some S .

A path is a sequence of (pairwise distinct) vertices V¥ ¢ ¥, such that every two
consecutive vertices v;,v;,,, are adjacent, for 1 < j < k-1; if also v, sees vy, then

vy r v Is called a cyele. A chordless path is a path v,v, - - - v, such that the only

edges of the path are (v;,v;.4), for 1 < j < k-1; a chordless cycle is a cycle



UyUz - - v such that the only edges of the eycle are (vj,v;49), for'1 < § < k-1, and
the edge (vy,v). P denotes the chordless path with & vertices: Cp denotes the

chordless cycle with £ vertices.

A graph is connécted If for every two vertices ¢ and y there is some path z..y. A
component of a graph is a maximal connected subgraph. (Throughout the thesis, the
terms ”maxi.mai” and “minimal” a.r‘e used with respect to set inclusion; for example, a
maximal connected subgraph is a connected subgraph that is not a proper subgraph of
any other connected subgraph of the graph). A singleton of a graph is a component
with only one vertex; a big component is a component with more than one vertex. A
“culsel is a set of vertices of a graph, such that the subgraph induced by the remaining
vertice§ is disconnected. Note that in a disconnected graph, any proper subset of the

vertices of any cormponent is a subset,.

The complement of a graph is the graph obtained by replacing all edges with non-
edges, and vice versa. G denotes the complement of the graph & . Thus, Fk and C‘}

are the respective complements of P and .

‘A c{iqué (respectively stable set) of a graph is a set of pairwise adjacent
(respectively non-adjacent) vertices. The cligue number (respectively stablility number)
of a graph is the number of vertices in a largest clique (respectively stable sef). The
chromatic number (respectively clique covering number) is the minimum number of
stable sets (respectively cliques) needed to partition the vertices of a graph. Denote the
stablility number, clique number, chromatic number and clique covering number of a

_ graph G by al(G), w(G’) x(G) and G(G) respectwely A graph is perfect 1f for each

: mduced subgraph H of G’ x(H) = w(H)
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2.2. Some Results in Perfect Graph Theory

In the more than twenty-five years that have passed since Berge posed the SPGC,
much research has been directed to the study of perfect graphs. Whereas originally most
research was directed towards resolving the conjecture, there are aspects of pérfect graph
theory which are now considered interesting in their own right, independent of whether
or not the SPGC is true (or even if it is resoived). In particular, the emergence in the
past two decades of issues related to computational complexity has inspired much
interest in perfect graphs: the question of whether or not perfect graphs are in NP is

currently the focus of much research.

In this chapter, we sketch a background of perfect graph theory. A more complete
history can be found in any of a number of recently published graph theory texts; for
instance, see Berge [1985]. Two books devoted entirely to perfect graph theory are

Golumbic [1980] and Berge and Chvdtal [1984].

2.2.1 The PGT and the SSPGT

When initial attempts to resolve the SPG(C were unsuccessiul, Berge posed a second
conjecture, which (since it was implied by the SPGC) became known as the Weak
Perfect Graph Conjecture. This conjecture was proved by Lovdsz and is now known as

the Perfect Graph Theorem.
PGT (Lovdsz [1972a]). A graph is perfect if and only if its complement is perfect.

In light of the PGT, it is natural to look for properties of perfect graphs that are
invariant under complementation. Speculation about such properties led Chvdtal
(1984a] to define the Py-structure of a graph G as the collection of those sets of four

vertices that induce a P, in G. Since the complement of a P, is a P,, the Postructure of
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& graph is the same as the Py-structure of its complement. Chvzdtal conjectured that the
perfection of a graph depends only on its Pstructure. This conjecture, implied by the
SPGC and implying the PGT(WPGC), was known as the Semi-Strong Perfect Graph
Conjeciure or SSPGC. The conjecture was proved by Reed in 1984, and is now known

as the Sem:-Strong Perfect Graph Theorem.

SSPGT (Reed [1985)). FEvery graph wilh the Py-structure of o perfect graph is

perfect.

The SSPGC has inspired several results that consider decompositions of perfect
graphs defined in terms of P,-structure. For example, vertices z and y are called
siblings if there is a set S of three vertices such that both S Uiz}and § | {y} are

Fgs. Chvdtal proved the following result,

Theorem (Chvdial [1985b]). Let the vertices of a graph G be coloured with two
colours such that every two siblings have the same colour. Then G is perfect ¢f and only

if each of the subgraphs induced by the set of all vertices of the same colour is perfect.

This theorem generalizes two earlier results: Chvdtal and Hodng {1985] showed that
if the vertices of a graph can be coloured with two colours such that every P, has an
even number of vertices of each coi-our‘, then the graph is perfect ¥ and only if each of
the two mono-chromatic induced subgraphs is perfect; Hodng [1085b] showed that if the
vertices of a graph can be coloured with two colours in such a way that every F, has an

odd number of vertices of each colour, then the graph is perfect.

Another result concerning P,-structure is that in a2 minimal imperfect graph every
vertex is in at least four: P s; this follows from a theorem of Olarlu [1986] (Actually, T
Olariu’s theorem is a much stronger statement however 1t is not prlmarlly related to

P structure.)
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2.2.2 Some Classes of Perfect Graphs

From the time that Berge first proposed the SPG'C, much of the energy devoted to
the study of perfect graphs has focused on finding new classes of perfect graphs. As has
been mentioned, both triangulated graphs and complements of trianguléted graphs were
known to be perfect by 1960. Other classes of graphs long known $o be perfect include
line graphs of bipartite graphs (this follows from a theorem due to Konig [19386]
concerning the edge-chromatic number of a bipartite graph) and comparability graphs.
A graph is a comparadilify graph it the edges can be directed so that for every three
vertices a,b,c, if (¢,b) and (b,c) are directed edges, then so is (e,c). Itis an exercise
to show that comparability graphs are perfect; that complements of comparability
graphs are perfect follows from Dilworth’s theorem [1950]: the size of a largest anti-chain

is equal to the minimum number of chains needed to cover & partially ordered set.

Since the early 1960°s many classes of perfect graphs have been discovered. In the

rest of this section we briefly discuss two ways of obtalning classes of perfect graphs.

Let P be some forbidden property of minimal imperfect graphs. If every induced
subgraph of a certain graph satifies P, then the graph is perfect. Thus the "subgraph
property” paradigm can be used to define classes of perfect graphs. For example, Berge
and Duchet [1984] déﬂned a graph to be strongly perfect if every induced subgraph has a
stable set which intersects all maximal cliques.” Another class of graphs which fits this
‘paradigm was defined by Meyniel. Call a set {x,y} of vertices of a graph an even pair
if every chordless path between z and y has an even number of edges. Meyniel [1986]
B defined a graph G to be quasi- paraty if, for every induced subgraph H of G Wlt;h at
-.least two vertices, either H or H has an even pair. We will say more about quasi;paritf N

graphs in Chapter 3.
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Another way to obtain (candidates for) classes of perfect graphs is to forbid certain
Induced subgraphs from Berge graphs. For ins-ta;nce, Tucker [1977] showed that K free
Berge graphs are perfect; Parthasarathy and Ravindra showed that K| 5-free Berge
graphs [1976] and (K ,-¢ )-free Berge graphs [1979] are perfect. Chvdtal and Sbihi refer
to the connected graph with five vertices that consists of a triangle and two pendant

edges as a bull; they showed that bull-free Berge graphs are perfect [1686].

As was mentioned in Chapter 1, the major contribution of this thesis IS the
introduction of weakly triangulated graphs and murky graphs. These two classes of
graphs clearly fall into the "forbidden subgraph” paradigm: weakly triangulated graphs
are Berge graphs with no C, or 51;: for £ even and & > 6; murky graphs are Berge
graphs with no Pg or P_B. In fact, weakly triangulated graphs also fzll into the

"subgraph property” paradigm; exactly how this is so is discussed in Section 3.2.3.

2.2.3 Properties of Minimal Imperfect Graphs

If the SPGC is true, then the only minimal imperfect graphs are chordless odd
cycles with at least five vertices, and the complements of such cycles. One approach to
the SPGC has been to look for properties of minimal imperfect graphs. For instance, (as
was noted in the previous chapter), a minimal imperfect graph does not have a cligue
cutset, nor a homogeneous set, nor & star cutset. (Actually, the fact that a graph does
not have a star cutset implies that is has neither a clique cutset nor a inomogeneous set;

see Chvdtal [1985a].) A major result in this area is due to Lovdsz.

Theorem (Lovdsz [1972b])). FEvery minimal imperfect graph G satisfies

e L a(G.)a{(G‘)qz;‘.{ G ] - _1.

(Recall that d(G) iS'.the stability number of G . and w{G ) the clique numi)ér.)
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Padberg [1974] extended Lovidsz’s result by showing that in a minimal imperfect
graph G
— there are |G | largest cliques and [G | largest stable sets.
— every vertex is in exactly (G } largest cliques and (G ) largest cliques, and

~ every largest stable set intersects all but one largest clique, and vice versa.

Define the graph C,f as follows: v, ..., v, are the vertices, with v; and v; adjacent

if |¢ — 7| < t, for every pair of vertices v;, v;. Observe that Copsyp is Cgiyy, and

5 -
Cokir Is C’é‘k’_li_l. In fact, the graph C %, satisfies the conditions of Lovasz and
Padberg. Chvdtal [1984c] showed the SPGC is equivalent to stating that every minimal
imperfect graph has a spanning subgraph isomorphic to C’oﬁfd‘jl. However, Chvdtal,
Graham, Perold and Whitesides [1979] found infinitely many graphs which do not
contain € ;’J_,I_l as a spanning subgraph, and yet which satisfy the conditions of Lovisz
and Padberg; Bland, Huang and Trotter [1979] independently discovered two of these

graphs. Thus the list of properties of minimal imperfect graphs described so far is

insufficient to imply the SPGC.

2.2.4 Complexity and a Changing Perspective

Since the time that the SPGC was first posed, ideas have emerged in. the theory of
computer science that have significantly altered the way problems are approached by
computer scientists. One such idea is the notion of a good algorithm, suggested by
Edmonds [1965] as an algorithm which computes the answer to a problem in such a way
that the number of operations required by the algorithm is bounded above by some
polynomial in the size of the problem. This immediately raises the question "for which

problems do there exist good algerithms?”.
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From this point of view, one of the most important open problems in perfect graph
theory is “does there exist a polynomial time algorithm to recognize perfect graphs? A
related question is whether or not there exists a certificate of perfection that could be
verified In polynomial time (i.e. whether or not perfect graphs are in NP). Whitesides
has suggested (see Berge and Chvdtal [1984-}‘, page xii) that perhaps perfect graphs can
be created from certain ”primitive classes” of perfect graphs using perfection preserving
operations. If the graphs in the primitive classes are in NP, and if the perfection
preserving operations can be performed in polynomial time, then it would follow that
perfect graphs are in NP. For example, cligue identification is the process of combining
two graaphs by identifying a clique of one with a clique of the other. It follows from
Dirac’s theorem that triangulated graphs can be created from cligues using the
perfection preserving operation of clique i.dentiﬁcation‘ Whitesides [1984] has shown how
to reverse this process, so that every triangulated graph can be decomposed into cliques
in polynomial time. (There are faster ways to recognize triangulated graphs; for
instance, see Rose, Tarjan and Leuker {1976]. However, the example preseg_ted bere
suﬁ‘ices to illustrate our paradigm.) Although this approach has been successful in 7
showing that certain classes of perfect graphs are in NP (or even in P), the question of
whetﬁer or not perfect graphs are in NP is still open. On the other hand, imperfect

graphs are in NP. We close the chapter with this result.

Bland, Huang, and Trotter [1979] call a graph G partitionable if there are integers
r 2 2 and s > 2 such that for each vertex v of &, the vertices of G — v partition-
into r cliques of size s and. § stable sets of size r". ’l_“hey n_oted_' that Lova‘s;’s theorem
(see thgér pieﬁious s_e_a_ctiot_:l)_ i_mi_)liés ..t.hat‘ agraph 1sm1n1rnal 1mperfect 11" and o__nly_‘if iﬁ
contains . partitionable induced subgraph.  AS Camdfon and Edmonds re

Cameron {1682]), this implies that imperfect graphs are in NP.
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Chapter 3

Weakly Triangulated Graphs

3.1 Introduction

Recall that a graph is weakly triangulated if it contains no Cy, and no T}, for & >
5. In this chapter we decribe some properti.es of weakly triangulated graphs, and show
that weakly triangulated graphs are perfect. In particular, we describe a relationship
between weakly triangulated graphs and star cutsets. Finally, we describe polynomial
time algorithms which solve the maximum clique, maximum independent set, minimum

colouring and minimum clique cover problems for weakly triangulated graphs.

An attractive feature of weakly triangulated graphs is that they can be recognized
in polynomial time. One such recognition algorithm is as follows: for each vertex in a
graph, determine if the vertex is contained in a chordless cycle with five or more vertices;
repeat the process for the complement of the graph. Whether or not a vertex v is
contained in a chordless cycle with five or more vertices can be checked as follows: for
each pair of non-adjacent vertices z and y which are both adjacent to v, remove all
vertices of the graph adjacent to both z and Yy, a8 well as all vertices adjacent to v
(except z and y), a,nd'then check whether or not there is a path from z to ¥ in the
resulting graph. The vertex v is contaiﬁed in a chordless cycle with at least five vertices
if and only if there exists such a path from z to y. For a graph with n vertices and e
edges, determining whether or not there is a path between a specified pair of vertices can
be done in time O (e). Since the total number of edges in a graph and its complement

is O (n?), the above algorithm recognizes weakly triangulated graphs in time O (n ®).
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Figure 3.1
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3.2 Weakly Triangulated Graphs, Star Cutsets, and Perfection

3.2.1 Why Star Cutsets?

In attempting to analyze the structure of weakly triangulated graphs, we begin by

examining two special cases: triangulated graphs and Pfree graphs.

Dirac {1961] proved that every minimal cutset in a triangulated graph is a cligue.
A theorem due to Seinsche [1974] implies that every P,-free graph with at least three
vertices has a homogeneous set. However, there are weakly triangulated graphs with no
clique cutset, no clique cutset in the complement, and no homogeneous set. The smallest

such graph appears in Figure 3.1.

In attempting to unify certain structural properties associated with decompositions
of perfect graphs, Chvgtal [1985a] conceived the following notion: a star cutsef is a set
¢ of vertices of a graph G such that some vertex in € is adjacent to all other vertices
in ¢, and such that G - € is disconnected. (In particular, if a graph has a clique
cutset, then it has a star cutset; if a graph has a homogeneous set, then either the graph
or its complement has a star cutset.) Let ' be a graph with star cutset C', with vertex
v in C adjacent to all vertices of ¢ — v, and let A be a component of & -, and B
the vertices of &G — € — A. Chvdtal proved that G is perfect if the tﬁree subgraphs

GAUG' GBUC' and G - v respectively are perfect; he also proved the analogous

decomposition result for the case in which the complement of a graph has a star cutset.

The following is a consequence of these two results:

The Star Cutset Lemma (Chvatal [10853]). I a graph s minimal imperfect, then

neither the graph nor its complement has a star cutset.
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Chvidtal conjectured that every weakly triangulated graph with at least three
veriices either has a star cutset, or else its complement has a star cutset. This

conjecture will be proved as the WT Star Cutset Theorem.

3.2.2 Perfection

The WT Star Cutset Theorem follows easily from the following theorem.

The WT Min Cut Theorem. Let N be a minimal cutsel of a weakly triangulated
graph G, and let N induce a connected subgraph of G. Then each connected component

of G — Nincludes at least one vertex adjacent to all the vertices of N.

Proof of the WT Min Cut Theorem. We first show that

every two non-adjacent vertices in NV

have 2 common neighbour in each component of G — N. ' (1)
For this purpose, consider arbitrary non-adjacent vertices z and ¥ in N, and an
arbitrary component A of G - N. Since the cutset N is minimal, each vertex in N
has at least one neighbour in A : now connectedness of 4 implies the existence of a path
from z to y with all interior vertices in A ; the shortest such path P is chordless. The
same argument, applied to another component B of G — NV, shows the ’existence of a
chordless path @ from z to y with all interior vertices in B. The two paths P and Q
combine into a chordless cycle in G; since G contains no chordless eycle with five or
more vertices, each of the two paths must have only one interior vertex. In particular,

the interior vertex of P is a common neighbour of  and y in A, and (1) is proved.

Nexs$, let us show that
the theorem holds whenever no two vertices in N are adjacent. (2)

To prove (2), we use induction on |N|. When |N| = 1, the conclusion follows from the
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fact that the cutset N is minimal. When |N| = 2, the conclusion is guaranteed by (1).
When [N| > 3, choose distinct vertices z,y,z in N and consider an arbitrary
component A of G — N. Note that N — z is a minimal cutset of G -z, and that
(G—2)-(N-z)=G - N. Hence the induction hypothesis guarantees the existence of
a vertex # in A that is adjacent to all vertices in N ~ = . By the same argument, some
vertex v in A is adjacent to all vertices in N - ¥y, and some vertex w in A is adjacent
to all vertices in NV -~ 2. We will show that at least one of the vertices u ,v,w Is
adjacent to all the vertices in N. Assuming the contrary, note that « ,v,w must be
distinct. Now # cannot be adjacent to v (else y,u,v,z, and any common neighbour of
z and y in ¢ - N - A, whose existence is guaranteed by (1), would induce a chordless
cycle in G); by the same argument, u caﬁnot be adjacent to w, nor v to w. But then
z,w,y.u,z,v induce a chordless cycle in . This contradiction completes the proof of

(2).

To prove the theorem in its full generality, we again use induction on [N ] ‘When
|[V| < 2, the conclusion follows from (2). When |[N[ > 3, we may assume that at least
two w-rertices in N are adjacent (else the conclusion is guaranteed by (2) again). Now we
claim that N includes distinet vertices z and y such that

(i) = and y are adjacent in &G, and

(if) both N — z and N - y induce connected subgraphs of & .
(To justify this claim, we only need choose z and % so that, in the subgraph of G
induced by /N, the shortest path from z to y is as long as possible.) Consider an
arbitrary component A of ¢ ~ N. By the induction hypothesis, A includes vertices u
and v such that u is adjacent to all the vertices in N — z and v is adjacent to all the
vertices in V — y. We will show thaf_ at least one of the vertices ¥ and v is adjacent to

all the vertices in IV. Assuming the contrary, note that ¥ and v must be distinct. By
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(i), the shortest path P from z to y in the subgraph of G induced by N has at least
one interior vertex. Now # and v must be adjacent: else %,v and P would induce a
chordless cycle in & . Next, the argument showing the existence of v in A shows also
the existence of a vertex r in G — N — A such that r is adjacent to all the vertices in
N —y. If r is not adjacent to y then u,r and P induce a chordless cycle in G ; else

u,r,v and P induce a chordless cycle in & . This contradiction completes the proof. B

The WT Star Cutset Theorem. If G is a weakly triangulated graph with at least

three vertices then G’ or G has a star cutset.

Proof of the WT Star Cutset Theorem. The star cutset may be found as
* follows. Choose an arbitrary vertex w in . For each vertexl_a: other than w, put z in
the set IV if = is adjacent to w; else put = in the set M. If IV -is empty then stop: {u }
Is a star cutset in G for every vertex u in M. If M is empty then stop: {v} is a star

cutset in G for every vertex v in V.

Now, both M and N are non-empty. If M induces a disconnected subgraph of @
then stop: {w } U &V is a star cutset in G. If NV induces a disconnected subgraph of @

then stop: {w } | J M is a star cutset in &.

Now, M induces a nonempty connected subgraph of G and N induces a nonempty
connected subgraph of G. If some vertex v in N is adjacent to no vertex in M then
stop: {w} {J (N —v) is a star cutset in G. In the other case, each vertex in N is
adjacent to at least one vertex in M : note that IV is a minimal cutset in G. Now, the
WT Min Cut Theorem guarantees that some vertex u in M is adjacent to all the

vertices in N. Stop: {w } J M -u)is astar cutset in & . &
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Corollary. All weakly triangulated graphs are perfect.

Proof. Argue by contradiction; let G be an imperfect weakly triangulated graph.
Then there is some induced subgraph H of & such that H is minimal imperfect; H is
also weakly triangulated. Graphs with one or two vertices are perfect; thus /I has at
least three vertices. But now the WT Siar Cutset Theorem says that either H or & has

a star cutset, contradicting Chvdtal’s Star Cutset Lemma. B

3.2.3 Star Cutsets and Generating Classes of Perfect Graphs

Chvdtal has pointed out that a forbidden property of minimal imperfect graphs
may be used to generate large classes of perfect graphs from smaller ones. For example,
the star cutset may be used in such a way. Specifleally, given any class ¢ of graphs,
denote by C * the class of graphs defined recursively by the following two rules:

() fGEC then@G eC”,

(ii) it G or G has a star cutset, and if @ —v € C* for all » €@, then G €C7,

Chvatal's Star Cutset Lemma implies that €' is a class of perfect graphs whenever
C is. For example, let Triv denote the class of ail graphs with at most two vertices.
What can we say about the class of graphs Triv " ? By the WT Star Cutset Theorem it
follows that Triv* contains the class of weakly triangulated graphs. On the other hand,
neither chordless cycles with five or more vertices nor the complements of such cycles
‘have star cutsets; thus a graph in Triv" cannot contain Cy or &, for k > 5, as an
induced subgraph. It follows that Triv® is exactly the class of weakly triangulated
graphs. Thus ﬁeakly triangulated graphs are fhe class of graphs associated with the

property ”either a graph or its complement has a star cutset”.
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Another class of graphs associated with star cutsets is the class Bip ™, where Bip
denotes the class of bipartite graphs. Although Bip * contains Triv *, as well as many
other classes of perfect graphs, it is not known whether or not graphs in Bip * can be

recognized in polynomial time.

3.2.4 Which Weakly Triangulated Graphs Have Star Cutsets?

Note that the WT Star Cutset Theorem states only that a weakly triangulated
graph with at least three vertices, or ifs complement, has a star cutset. We now answer
the question “exactly which weakly triangulated graphs have star cutsets?”. The
following theorem is a strictly stronger statement than the WT Star Cutset Theorem.
However, we have inciuded both theorems because the proof of the WT Star Cutses
Theorem is much simpler than the proof of the following theorem, and because the WT
Star Cutset Theorem sufices to prove that weakly triangulated graphs are perfect. In

fact, it is the WT Star Cutset Theorem that appears in Hayward [1985].

The Second WT Star Cutset Theorem. Let G be a weakly triangulated graph.
Then exactly one of the following is true:
(i) G isa clique,
(it) every component of G consists of a single edge,

(i) G has a star cutset.

Before proving the theorem we present a lemma,; before presenting the lemma, we
introduce some definitions. A versex z is said to be dommated by a vertex y 1f every

vertex (dlﬁ‘erent from z and y) that 1s a,dja,cent to :r is also ad,]acent to y We call a

graph w1th no dommated vertex dommatwn free 'Recall that N(m) and M(a: )' are -

respectively the neighbourhood and non-neighbourhood of a vertex z .
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The WT Domination-Free Lemma. I G is a domination-free weakly

triangulated graph with at least two vertices, then G has a star cutset.

Proof of Lemma. First, we propose to find a vertex v and a component J of
M{v ) such that
every vertex in /N (v ) has a neighbour in J. (1)
For this purpose, we borrow a trick from Raviadra [1982]: find a vertex ¢ and a
component F of M (t) such that the number of vertices in F is minimized (over all
choices of ¢ and F'). We claim that (1) holds whenever v € F and J is the component
of M (v) that contains {. To justify this claim, consider an arbitrary =z in N(v). We
may assume that z ¢ N(t), for otherwise ¢ is the neighbour of z in J; hence z € F.
Since z is not dominated by v, it has a neighbour y in M(v); trivially, y € F J
N{(t). Now we only need verify that F M M(v) € J and N(¢) N MP)yZ J. The
second of these inclusions is cbvious; to verify the first, we only need verify that every y
in ¥ () M(v) has a neighbour in N(¢) () M (v)}. If the last assertion were false then
the component of M (v) that contains ¥ would be contained in F—u, econtradicting our

choice of ¢ and F'. Hence (1)} holds.

Now consider the subgraph H of G iﬁduced by {v} |J N(v) J /- It follows
from (1) that N(v) is a minimal cutset in H. Next, the WT Min Cui Theorem
guarantees that the complement of the subgraph induced by N (v ) must be disconnected -
(otherwise v would be dominated by some vertex of J in H, and therefore also in &)

But then {v } | | M (v} is a star cutset in G. H

Proof of the Second WT Star Cutset Theorem. We shé,ll'argue by iﬁdu—c”tion"; Rt

the cases where G has at most four vertices canr be checked by inspection. Now suppose
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that G has at least five vertices. If & is domination-free then G is domination-free,
and G has a star cutset by the WT Domination-Free Lemma. Suppose then that @ is
not domination-free: in this case there are vertices u and v in &, such that v

dominates v, i.e. N(u)—- v isa subset of N(v).

Case 1: suppose that u is not adjacent to all the vertices of (7 — v. In this case

{v} U N(u) is a star cutset.

Case 2: suppose that u is adjacent to all the vertices of & — v. Then, since v

dominates u, v is adjacent to all of & — u . There are two subcases to consider.

Case 2.1: suppose that u is adjacent to v (thus N{@)=(G ~v and
N{u)= G -~ u). Then either G is a clique, or else there are non-adjacent vertices z

and y in &, in which case G — z — y is a star cutset {v is adjacent to all of G - v).

Case 2.2; suppose that U is not adjacent to U {thus
N(@)=N(u)=G —u —v). We now use the inductive hypothesis on ¢ —u —~v.
It G ~u —v is a clique, then & —u — v is a star cutset in & . If G —-u —v has s
star cutset ¢, then C [ J {u,v} is a star cutset in G. Finally, note that the
complement of & counsists of the complement of ¢ — u — v together with a component
consisting of the edge induced by {u,v}. Thus, if every component of G — u — 0 is &
single edge, then every component of & is a single edge. This completes the proof of the

Second WT Star Cutset Theorem. B

Vertices z and y of a graph G are called twins if every vertex of G -2 —y is
adjacent either to both £ and y or to neither # nor ¥ . A corollary of the Second WT
Star C’utse_t Thsor_em is that every twin—freeIWeakly triangulated graph with at least
three vefticeIS'I has a star cutset. This is a stronger statement than thé WT Domination-

Free Lemma.
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3.2.5 A Domination-Free Weakly Triangulated Graph

Domination-free weakly triangulated graphs are mentioned in the proof of the
Second WT Star Cutsel Theorem. In this section we describe such a graph W. OQur
search for a domination-free weakly triangulated graph was motivated by Mahadev
(19841

The set of vertices of W is the union of the set X = { z,, z,, 2, .., ,, } and
the set ¥ = { ¥, ¥1, ¥2 -, Y1, }- The only edges of W with both endpoints in X are
(Tag, Tagsq) a0d (Tapyy Ty for & = 0,1,2,3. The only edges of W with both
endpoints in Y are (¥4, ¥ak41) and (Yap 41, Yak +2), for & = 0,1,2,3. Pinally, for k =
0.1,2,3, (all indices are modulo 12)
the only edge of W between {ysi, Yap 41 Yapso) 204 {Tgp, Top,y Topoo) is the edge
(Yak. T3k )
the only edge of W between {¥sk. Yarsr Vak o) and {244 +8 T3k 4 Tgpypr is the edge
(Yak, Tag +3)s
the only edge of W between {ygz, yas +1 Yae o) a0d {Tapie, Tupay, Tap e} I the edge
(Ysk, Tap +7),
the only edge of W between {ys5,¥sr 41,¥ak 42} 804 {Tap 10,7 55 110, T ap 411} IS the edge
(Y ak +1:% 3 +0)-

Table I'lists that part of the adjacency matrix of W representing edges of the form
(z;, y;). Figure 8.2is a drawing of the subgraph of W induced by X J {Y3k, Vars1
Ysk o ;md Figure 8.8 is a drawing of the whole of W. Note that W is sell-
complementary: the permutation P defined by P(z;) = y; and P (y;) = ;.5 for i =

0,1,...,11 sends edges of W onto edges of W and vice versa.
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Figure 3.3. The domination-free graph W
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Table I.  a;; = 1 if and only if x; is adjacent to y; in W

Since W is self-complementary, in order to prove that W is weakly triangulated it
is sufficient to show that W has no chordless cycle ¢ with at least 5 vertices. Argue by
contfadiction: suppose that W contains such a ¢ . Recall that
(i) the subgraph of W induced by X consists of four disjoint Pgs,

(ii) the subgraph of W induced by ¥ consists of four disjoint Pg’s.

It is a routine matter to verify the following three claims:
(iif) W contains no chordless path (p 1 P2 Pa, P4 Whose intersection with X is the
set {p,, Pa}
r(iv) W contains no chordless path (p 1 P2 Pa P Pg) Whose intersection with X is
{P 2 Pa Dl
R W contains no chordless cycle (¢4, ¢4, ¢4 ¢4, ¢;) whose intersection with X is

From (v) and the fact that both W and € 5 are self-complementary, it
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follows that

(vi) W contains no chordiess (¢, ¢y, ¢q €4 €5) Whose intersection with X is the set
{c1 ca}-

Because of (i), ¢ cannot be properly contained in X . Because of (i), € cannot be
properly contained in Y. .Hence, let Cy be the subgraph of W induced by those
vertices of ' in X and Cy be the subgraph of W induced by those vertices of €' in Y .
Both Cy and Cy must consist of disjoint chordless paths. Because of (i}, Oy contains
no P, with & > 3. Because of (iv) and (v), Oy contains no P 3. Because of (iii), Cy
contains no P,. Thus Cy consists of pairwise non-adjacent vertices. Cx cannot consist
of a single vertex, because then Cy would contain a Pj, W‘rith k > 4, contradicting (ii).
Thus C'y consists of at least two non-adjacent vertices; hence Cy consists of (at least
two) disjoint chordless paths. But Cy cannot contain three or more disjoint chordless
paths, because then Cp would contain a triangle, contradicting (if). Thus Cy consists
of exactly two disjoint paths; now (ii) implies that one of these paths is an isolated
vertex, and the other has two vertices (each subgraph of W induced by at least four
vertices in Y is connected). But then the cycle would have to consist of exactly five
vertices (¢, €5, €3, €4 €5) Whose intersection with Y is {c, ¢4 cg}, contradicting

(vi). Thus, W is weakly triangulated.

To verify that W is domination-free, assume the contrary: some vertex u is
-dominated by a vertex v. First, consider the ¢ase when u is in X, By symmetry, we
may assume that ¥ = z; with 0 < { < 2. To see that v cannot be in Y, consult

Table II.
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Yo Y1 Ya Ya Ya ¥s Ye Y7

Y9 Yo Yo

Zo R [z, N R | =, ey |y, | ysa | ¥7 { %10 Y | Y10
Ty bz, |z, | =, | 2, | 2o | 2, | ¥, | vs | vs | 910} Yu | Y10 |
CTa | @y | 2y | 20 | 2, | 24 | 20 | y7 | ys | s | ¥0| ¥l ¥l

Table II. Neighbours of x; non-adjacent to

Thus we must have v = z; for some j; comsidering the

y.i in W.

subgraph of W induced

by X', we conclude easily that 0 < j < 2. But now we only need observe that

Yo sees z o and misses z,,7,,
Yo sees z 1,7, and misses z,
Y g Sees T4 and misses z,,
T sees x; and misses z,.

Thus ¥ cannot be in X .

Next, consider the case when u is in Y. By symmetry, we may assume that u =

¥; with 0 <7 < 2. To see that v cannot be in X, observe that u is adjacent to both

Ty and g, at least one of which is non-adjacent to v. The only remaining subease, with

¢ and v both in Y, is reduced to a previous subcase by considering the permutation P

that sends W onto its complement: clearly, P(v) is dominated by P (u), and both

P(u)and P(v)arein X. Thus W is domination-free.

Incidentally, W has neither a clique cutset nor a homogeneous set. Furthermotre,

W is not strongly perfect. (Recall from Chapter 2 that a graph is strongly perfect if in

every induced subgraph there is a stable set that meets all maximal cliques.} In the

subgraph of W induced by Z = { 2o, 7., 2o, 24, Ty, Ty Yo Y1 Yoo U7 } no stable set

meets all maximal cliques. To see thfs, note that the maximal cliques of this graph are
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Figure 3.4. The subgraph WZ , with weights on maximal cliques
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{20 2197}, {2622 911 {20 Vo ¥s b {ze ve ¥o 2
{20 Y0 ¥z } {26 ¥6 ¥} {21 70 Y7 1 {20 Tg ¥4 j?
{22 ye} { 75 Yo}, and {yuys)

Assign to these cliques the integers -1,-1,0,0,1,1,1,1,-1,-1,-1 respectively. The sum of the
integers is -1, and yet for each vertex v, the sum of the integers of the cliques that
contain v is 0. On the other hand, let S be a stable set that meets every maximal
clique of a graph . Since a stable set meets a cligue in at most one vertex, each
maximal clique of ¢ meets precisely one vertex of §. Thus, if integers are assigned to
the maximal cliques of G such that for each vertex v, the sum of the integers of the
cliques that contain v is O, then the sum of the integers must also be 0. Thus W is
not strongly perfect, and so neither is W. A drawing of W 7z, with.the maximal cliques

labelled as described above, is shown in Figure 8.4.
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3.3 Weakly Triangulated Graphs and Two-Pairs

An even pair is a pair of (non-adjacent) vertices in a graph, such that every
chordless path between the two vertices has an even number of edges. Meyniel defined a
graph G to be strict quasi-parity il every induced subgraph H of &' which is not a
clique has an even pair. A graph G is quasi-pariy if every induced subgraph H of G,
or its complement ﬁ, Is either a clique or has an even pair. Meyniel proved that strict
quasi-parity graphs and quasi-parity graphs are perfect. Recently Hodng and Maffray
[1986] proved that weakly triangulated graphs are strict quasi-parity. It is not known
whether or not strict quasi-parity graphs, or quasi-parity graphs, can be recognized in

pelynomial time.

Hodng and Maflray showed that weakly triangulated graphs are strict quasi-parity
by proving that every weakly triangulated graph which is not a clique has an even pair.
In fact, a slightly stronger statement is true. We call a pair of vertices a fwo-pair if
every chordless path which joins the vertices has exactly two edges. The original

theorem of Hodng and Maffray was easily modified to yield the following thecrem.

The WT Two-Pair Theorem. Every weakly triangulated graph which is not a cligue

has o two-pair.

Proof. We shall prove 3 stronger assertion, namely, that all weakly triangulated
graphs G other than cliques have the following two properties:
(1) if G has no cligue cutset then each cutset of G contains a two-pair,

(2] @ contains a two-pair.

Arguing by induction on the number of vertices, we may assume that both (1) and
(2) hold for all weakly triangulated graphs with fewer vertices than G'. To prove (1) for

G, consider any minimal cutset ¢ of G. By assumption, C is not a clique. We shall
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distinguish between two cases.

Case 1. Suppose that C—fc is disconnected. Let D be the set of vertices of some
component of (—2’0 with at least two vertices (since € is not a clique, there must be such
a set D). Note that every vertex of C — D is adjacent to every vertex of I', and that
D is a minimal cutset, not a clique, of & ~ (C - D). Thus by inductive assumption, D

contains a two-pair of G — (C - D ); obviously, this two-pair is a two-pair of & .

Case 2. Suppose that ch is connected. Let Bl, ..., By Dbe the vertex sets of the
components of G — C'. Now use the WT Min Cut Theorem: in each component Bj,

there is some vertex that is adjacent to all of C.

Case 2.1. Suppose that IBJ-I = 1 for all j. Then, by inductive assumption the

graph G contains some two-pair {z.y}. Clearly {z,y} is a two-pair of @ .

Case 2.2. Suppose that |B;| > 2 for some 7. Let z be any vertex of B; that is
adjacent to all of C'; let D be the set of vertices of € that are adjacent to some vertex
of By - z. Now D is a minimal cutset of (7 — z. Note that D is not empty, and not a
clique (otherwise D U {z } is a clique cutset of G, contradiction). Thﬁs, by inductive

assumption D contains a two-pair of & — » which is clearly a two-pair of & .

To prove (2) for &', we may assume that G has a clique cutset & {otherwise the
desired conclusion follows from (1)). Let B, B, .., B, be the vertex sets of the
components of ¢ -C'. If some G—BJ- is not a clique then by the induction hypothesis
G’-—BJ- contains a two-pair; since every chordless path in & with both endpoints in
-G’ -B- is fully contained in G—BJ- s this two-pair Is also a two-pair in G'. Hence we may
assume that each G-—B 1s a chque Th}s 1mp11és th;a,t £ _— 2 and that {:v ,y} is a two-

pair whenever T € Bl, y E B E
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A noteworthy distinction between an even pair and a two-pair'is that it is easy to
check in polynomial $ime whether or not a pair of vertices is a two-pair: remove the
common neighbours, and check whesher the original two vertices are in different
components of the resulting graph. (We know of no polynomial time algorithm to
determine if a pair of vertices is an even pair.} In the next section we build upon this
property and derive polynomial time algorithms for solving certain optimization

problems for weakly triangulated grapkhs.
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3.4 Optimizing Weakly Triangulated Graphs

3.4.1 Introduction

In this section algorithms are presented which solve the following problems for
weakly triangulated graphs in polynomial time.

The Maximum Clique Problem. Find a largest clique in a graph.

The Maximum Stable Set Problem. Find a largest stable sef in a graph.

The Minimum Colouring Problem. Find a partition of the wertices into the

smallest number of stable sets.

The Minimum Clique Covering Problem. Find a partition of the vertices into

the smallest number of cliques.

Algorithins are also presented which solve the weighted vers.i‘ons of thése problems.
In each of the following problems, assume that a gra,ph‘ G with vertices vy,..,t, and
positive integers w (v ,),...,w (v, ) are given. i‘hese integers are referred to as weights.

The Maximum Weighted Clique Problem. Find a cligue K of G, such that the

sum of the weights of the vertices of K is mazimum, over all cligues of G.

The Maximum Weighted Stable Set Problem. Find a stable set § of @, such

that the sum of the weights of the vertices of S is mazimum, over all stable sets of G.

The Minimum Weighted Colouring Problem. Find stable sets S1esSy and
integers X (S, ),...,X (S, ), such that
(1) Jor every vertex v;, the sum of the integers X (S;) of all sets S; such that v; €5
is at least w (v; ), and such that
(2) the sum of all integers X (§,) + ... + X (S, ) is minimum, over all sets of integers

that satisfy (1).
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The Minimum Weighted Clique Covering Problem. Find cligues K., . ..K,
and infegers X (K ),..., X (K, ), such that
(1) for every vertez v;, the sum of the integers X (K;) of all sets K; such that v; € K;
is at least w (v; ), and such that

(2] the sum of all integers X (K1) + ... + X (K, ) is minimum, over all sets of integers

that satisfy (1).

.An algorithm which solves any of the weighted problems can be used to solve the
unweighted version of the problem by assigning the weight "1” to all vertices. However,
since our algorithms for the unweighted problems are more transparent and more
efficient (in the sense of worst time complexity) than the algorithms for the weighted

problems, we include both sets of algorithms.

Actually, we present only two algorithms. Algorithm OPT solves the maximum
clique and minimum colouring problem for weakly triangulated graphs; Algorithm W-
OPT solves the weighted versions of these problems. Since the complement of a weakly
triangulated graph is weakly triangulated, Algorithms OPT and W-OPT can alsc be
used o solve the unweighted and weighted versions respectively of the maximum stable
set and minimum cligue covering problems: to find a largest stable set of a graph G,
find a largest clique of Cf; to find a minimum clique covering of a graph &, find a

minimum colouring of & .

Our algorithms rely on the fact that every weakly triangulated graph is either a
clique or else has a two-pair {see the previous section). The aforementioned optimization
problems are easily solved for graphs which are cliques. Given a weakly triangulated
graph other than a clique, our algorithms repeatedly find a two-pair, each time

transforming the graph in question into & smaller weakly triangulated graph by
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"identifying” the two-pair. (We will define this term shortly.) Eventually the original
graph is transformed into a clique; the optimization problem is solved for the clique, and
the two-pair identification process is reversed, transforming the solution of the
optimization problem for the clique to the solution of the optimization problem for the

original graph.

3.4.2 The Unweighted Case

Let G'(zy —=z) be the graph obtained by repiacing vertices z and y of G with a
vertex z, such that z sees exactly those vertices of G — {:v ,y} that see at least one of
{z,y}. The identification of z and y and G is the process of replacing G with
G(zy —z).

In the following algorithm, we specify a colouring by a function [ o that assigns
some integer from 1 to ¢ to each vertex, such that adjacent vertices are assigned

different integers. Assume that V(G )= {v,, v,, ..., v, } is the set of vertices of G .

Algorithm OPT(G).

Input: a weakly triangulated graph & .
OCutput: a largest clique KG and a minimum colouring Je.
Step 1. Look for a two-pair {z,y } of G .

If & has no two-pair, then
(a) Kg «— V(G),
(b) fori =1ton do fu(v)+— 17, and
(c) STQP.
Step 2. J e Gleg—z)

Step 8. K;, f; — OPT{).
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Step 4a. It z ¢ K, then K; « K, else (z € K; and..)
Ifz seesallof Ky — {z} then Kg — K; ~{z}+ {z},
else Keg —K;-{z}+{y}.
Step 4b. Je@)—fely) = fs(2);
for each v; € J - {z .,y } do

Fa(v)— frv) H

‘To prove the correctness of Algorithm OPT, we need to establish several properties
concerning the identification of a two-pair in a weakly triangulated graph. One such

property is described in the following lemma.

The Identification Lemma. Let G be a weakly triangulated graph with a two-pair

{z,y}. Then Gfzy—2z) is weakly triangulated.

Proof. Let H = G (zy —z). We prove that if & is not weakly triangulated, then
-neither is G'. Assume that H is not weakly triangulated. Then there is some subset ¢
of the Vertiées of H, such that the subgraph Hg of H induced by C is either Oy or 5,6,
with ¥ > 5. If 2 ¢ C, then clearly G is not weakly triangulated. Thus We.may

assume that z € .

Case 1. Hy is a chordless cycle ¢,...¢, with & > 5.
Assume without loss of generality that z == ¢,. Then € 3-..C; 18 a chordless path in &.
‘Since z sees ¢g,¢p, and none of cy,...,cp_y, at least one of {z .,y } sees ¢ ,, and similarly
¢y, and meither z nor y sees any of {cg,....,c;_;}. Now observe that at least one of
{2,y } must see both of {c,¢c; }. (Suppose not; assume w.lo.g. that z sees ¢, but_ﬁot
¢ and that y sees ¢; but not €q Then (z,c,...,c;,y) is a chof.dlé;s's z.)at'l.l.w.'ith é:t'i»_éast'

six vertices, contradicting the assumption that {z,y} is a two-pair.} Thus assume
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w.lo.g. that z sees both of {c,c; }. Then {z,c,,...,c; } induces a O, in G, G is not

weakly triangulated, and the theorem holds in this case.

Case 2. H is a chordless cycle ¢ 1.-0p With & > s,
Assume without loss of generality that z == ¢,. Thus ¢ 2Cy I8 2 P, in G, and
(I) ¢ sees neither z nor y and ¢; sees neither z nor ¥y, and
(if)  every vertex in {cg,...,c; } sees at least one of {z.y}
Now observe that
(i) 2 ory sees both ¢4 and c .
(Assume the comntrary. By (ii) either z or y sees ¢ g assume w.lo.g. that z sees ¢,
Since (ili) does not hold, z does not see ¢,; thus by (i) y sees ¢ 4, and since (iii) does not
hold, y does not see ¢, But then (z,c4c,,c,y) is a Fs, contradicting the fact that

{z.y } is a two-pair in G )

Assume w.l.o.g. that z sees hoth €y and ¢ let m be the smallest index greater
than four such that » does not see c,,. Then 2 ¢q..c,, is a Of, with & = 5, G is not

weakly triangulated, and the theorem holds in this case. B

Amnother result that will be used in proving the correctness of Algorithm OPT is

that two-pair identification does not change the clique size. This follows from a lemma

due to Meyuniel.

The Clique Size Lemma (Meyniel [1986]). If vertices = and v of a graph G are

not joined by any chordless path with three edges, then w(Gley—z}) = w(G).

The Clique Size Corollary. If {z,y} is a two-pair of the weakly triangulated

graph G, then w(G(zy—z)) = w(G).
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The Correctness Theorem. Algorithm OPT finds a largest cligue and a

minimum colouring of G.

Proof. Throughout the proof we let |f ¢ | and |f ;| denote the number of colours
of f¢ and [ respectively. Since the clique size of 2 graph is never greater than the
chromatic number, to prove the theorem it suffices to show that K¢ is a clique, that f g
Is a colouring, and that |[Kg| = [f¢|. The proof is by induction on the number of calls
of OPT. (Since identification decreases the ﬁumber of vertices by one, OPT is called at
most n times; thus the algorithm terminates.) If OPT is called only once, then the
algorithm terminates at Step 1. By the WT Two-Pair Theorem, Ke =V(@)is a

clique, [ is 2 colouring with n = |K¢ | colours, and the theorem holds.

Suppose then that OPT is called more than once; thus the algorithm terminates
with Step 4b. Since (by the Ideniification Lemma) J is weakly triangulated, by the
inductive hypothesis we may assume that K; and S are a respectively a clique and a
colouring of J, such that |K;[ = |f,|. If z ¢ K, then Kz = K, and |Kg | = K.
If # € K;, then either z or ¥ must see all vertices of KJ’ — 2. (Suppose not. Then z
misses some v; € K;; however, y sees v;, else z would miss v; . Similarly, y misses
some v; € K; that sees z. But then Tv; v; ¥ is a chordless path, contradicting the
assumption that {z,y} is a tﬁ&pair.) Thus |Kg| > |K;|. Since K, is a largest clique
of J, the Identification Lemma implies that |Kg [ = K |.

Since ﬁo pair of adjacent vertices a,b of J satisfy f;(a) = f,;(d), no pair of
adjacent vertices a,b of G — {z,y} satisty fq(a) = fg(b). Finally, let ¢ be a
vertex of G thaﬁ sees ab least one of {z WY }; then ¢ sees z in J, and so

Taley=fslc)*=f;(z)=felz)= faly).

Thus no pair of adjacent vertices u,v of G satisfy felu) = fgv) and f4 s a
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colouring. Note that [fg{ = |f;[|.. Thus [Kg| = |K,| = If7] = [f¢l, and the

theorem is proved. - |

A corollary of the Correctness Theorem is that w(G) = ¥(G) if G is weakly
triangulated. Thus (since every induced subgraph of a weakly triangulated graph is
weakly triangulated) the Correciness Theorem yields another proof that weakly

triangulated graphs are perfect.

We now analyze the complexity of Algorithm OPT(G). Let ¢ be the number of
edges of G, and n the number of vertices. Note that a pair of non-adjacent vertices z
and y in a graph G is a two-pair if and only if there is no path from z to y in & -—N,
where IV is the set of all vertices of G that see both z and y. Determining whether or
net two vertices are in the same component of a graph can be done in time O (n-+e)
Thus determining whether or not a pair of vertices is a two-pair can be done in time
O(n +e), and Step 1 can be done in time O ((n +e)n ?). Step 2 can be done in time
O(n ), as can Steps 4s and 4b. Since Step 3 is executed at most n -1 times, the worss-

case complexity of Algorithm OPT is O ((n-+¢)n?®).
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G(y —» ab)

HExb—# z) =

G{xy —¥ za)

Figure 3.5. Quasi-identification
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3.4.3 The Weighted Case

In this section we present polynomial time algorithms that solve the weighted
versions of the maximum clique, maximum stable set, minimum colouring and minimum

clique covering problems for weakly triangulated graphs.

One way to solve the weighted clique problem for a graph G is to replace every
vertex v of & with a clique of size w (v), and then solve the unweighted clique problem
on the resulting graph. However, this transformation is inefficient if the weights are

large. Our solution is more direct.

Define G (v —wvw) to be the graph obtained from the graph G by replacing the _
vertex u with vertices v and w, such that v sees w, and such that i, v, W see exactly
the same vertices of ¢ ~ u. This process is referred to as duplication.

‘We now deflne an operatioﬁ that combines identification and duplication., Define
G (zy —+2a ) to be the graph H(zb—z), where H = G (y —ab). We refer to the
process of replacing & with G (zy —za ) as quasi-identification.

Quasi-identification is represented in Figure 8.5. Note that G (zy —za) is the
graph obtained from G by replacing z .y with z,a respectively, such that z sees a, z
sees exactly those vertices of G — {:v: ,y} that see at least one of {z,y‘}, and a sees

exactly those vertices of G - {z,y } that see .

In the following algorithm, the weighted colouring J ¢ consists of stable sets SG],

Sg, - 9¢g, and associated positive integers X(5¢), X(Sg) s X(5¢g )

Algorithm W-OPT(G ).
Input: a weakly triangulated graph G .

Qutput: a max. weighted clique K; and a min. weighted colouring fog-



Step 1.

Step 2.

Step 8.

Step 4a.

Step 4b.
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Look for a two-pair {z,y } of G.
If ¢ has no two-pair then
(a) Kg « V(G),
(b) fori «—1ten do
Se, —{u },
X (Sg,)+ w(y;)
(¢) STOP.
Assume that w (z) < w(y).
If w(z)= w(y) then
J — G(ay—z),
w(z)— w(z);
else { ..thusw(z) < w(y) ..}
J +— G (zy —za),
w(z)+ w(z),
w(e)—w(y)—wiz)
Kr, f; +— W-OPT(J).
If = ¢ K; then Kg « K, else (z € K7 and ...)
ify seesallof Ky —{a,z}then Kg — K; —{a,z} +y
else (...z seesallof K; ~{a,2}.)Kg « K; ~{a,z} +z.
For each set 5y of f; do
() iz €5y then Sg + S, -2z + {z,y}, else
if e €5, then Sg « .5 ~ @ +y, else
Se, + Sy, |

() X(Sg,) +— X (Sy). B
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The proof of correctness of Algorithm W-OPT parallels the proof of correctness of
Algorithm OPT. We first show that quasi-identification of s two-pair of 2 weakly

triangulated graph yvields a weakly trian gulated graph.

The Quasi-Identification Lemma. Let G be a weakly triangulated graph with o

two-pair {z .,y }. Then G (zy —za ) is weakly triangulated.

Proof. G (zy—za) = H(zb—z), where H — G (y—ab). It is easy to check

that H is weakly triangulated and that {z.,b} is a two-pair of H. Now the result

follows from the Identification Lemma. &

Next we prove that the process of quasi-identification, together with the
reweighting of the new vertices as described in Algorithm W-OPT, does not change the
weighted clique number of G. Let Q(G) represent the weighted clique number of &

{i.e. the weight of a maximum weighted clique of G ).

The Weighted Clique Number Lemma. Let G be a weighted weakly
treangulated graph with a two-pair {z,y} such that w(z) < w(y). Let F = Gfry—za), and
let w(z) = w(z) and w(a) = w(y) - wfz). Then Q(G) = QfF).

Proof. F = G(zy—za) = H(zh—=z), where H — Gy —ab). Let w(b) =
w(z); clearly Q(H) = Q(G). To prove the lemma we need ounly show that QF) =
Q(H).

Let Ky be a clique of H of maximum weight. Since z,b are non-adjacent, Ky
contains at most one of these two vertices. If K contains neither # nor b, then Ky is
a clique of F'. If Ky contains z, then Ky — z + z is a clique of F with the same
: vs.rei.ght. as KH, if K contains b, then Ky — b + 2 ls a3 bﬁque of F with the same

weight as Ky . Thus Q(F) > Q).
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Now let Ky be a clique of F' of maximnum weighs. If z & Kp then Kp is a clique

of H;if = € Kp then either Kz ~ 2z + z or Kp — 2z + b is a clique of H, and both

have the same weight as Kp. Thus Q(H ) > Q(F).

The Weighted Correctness Theorem. Algorithm W-OPT solves the Mazimum
Weighted Cligue Problem and the Minimum Weighted Colouring Problem for a weakly

triangulated graph G .

Proof. Let Kg and fg be as described in Algorithm W-OPT. 1t is easy to check

that K¢ is a clique, and that Sg, Is a stable set, for all {. Let [Kg| = 31 w{v) and
UEKG

let |/o| = 3 X(G;). We wish to show that f ¢ satisfles property (1) of the definition
i

of the Minimum Weight Colouring Problem, and that |[Kg| = |fq] Note that if K is
any cligue of a weighted graph, and if f is any colouring that satisfies (1), then |K| <
[f | thus the equality |[Kg| = |/ 4 | implies that both K and [ are optimal.

We first show that (1) holds for f . Argue by induction on the number of times
Step 1 is executed in W-OPT(G). If Step 1 is executed only once, then X (Sg,) = w(y)
for all ¢ = 1,..,n, and (1) holds.

Suppose then that Step 1 is executed at least twice. Thus the algorithm terminates
with Step 4. Assume by induction that (1) holds for the colouring f 7 of J. Recall that
in Step 4b,

the vertex 2z is replaced (in every set SJ'. of f, that contains z) with the
pair of vertices z,y, and, if w (2} < w(y),
. tﬁe-vertex d is replaced '(in eve.ry set Sy of [y that contains ¢ ) with the

vertex y.
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In the case where w(z) = w(y), we have w(z) = w{z)= w(y) and so

w(z)=w(z)= 3 X(S;)= 3 X(S¢)

§;.2s 5g 2z

wy)=w(z)= 3 X(E;)= 5 X(5).

5,2 Se,2u

In the case where w(z) < w(y), we have w(z) = w(z) and w(y)=w(a)+ w(z),

and so

w(Ez)=w(z)= % XS = % X (Sg,).
S,‘,Qz §g Dz

i

W) —wE) twle) =5 X(E)+ 5 X(S) = 5 X(Se)
S5 2z $p2a Sg, 2y

Thus property (1) holds for f 4.

Now we wish to show that [Kz| = |fg|. Argue by induction on the number of
executions of Step 1; the result clearly holds if Step 1 is executed exactly once. Assume
then that Step 1 is executed more than once; thus the algorithm terminates with Step 4.

By the induction hyposhesis, |[K;| = |f,]|.

Now an argument similar to that used in the Correctness Theorem establishes that
|Ko| = K, |; thus to finish the proof, we need only show that |fe¢|=1|fs| But thisis

obvicusly the case, because there is a one-to-one correspondence between the stable sets

of f¢ and f;, namely Sg, corresponds to Sy, and X (Sg ) = X (5;) for all 4.

We now analyze the complexity of Algorithm W-OPT(G). Let ¢ be the number of
edges of G, and n the number of vertices. As in Algorithm OPT({G), Step 1 can be

done in time O ((k+e€)n?), and Steps 2, 4a and 4b can be done in time O(n). Now

consider Step 3. The graph J is elther G(:ry —*z) or G(xy -—>za) In the former case J -

has one vertex fewer than G'; in the latter case, J has at least one edge more than G’ (z B
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sees every vertex of G — {z,y} that z sees, ¢ sees every vertex of G — {z,y} that y

sees, and 2z sees a whereas z misses y). Thus Step 3 is "executed at most

n ~1—|—[g] — € times, and the worst-case complexity of Algorithm W-OPT is

O ((n4e)n®.
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Figure4.1. L g 2nd L 9 (bottom and top)
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Chapter 4

Murky Graphs

4.1 'The Main Result

In this chapter we introduce a new class of Berge graphs, namely murky graphs,
and prove that murky graphs are perfect. A graph is murky if it contains neither Cy,

F,, nor Py as an induced subgraph.

Recall (see Chapter 1) that a graph is unbreakable if neither the graph nor its
complement has a star cutset. A class H of graphs is called hereditary if every induced
subgraph of a graph in & is in H. Since minimal imperfect graphs are unbreakable, to
prove that the graphs in some hereditary class C' are perfect, we only neced prove that
the unbreakable graphs in €' are perfect. Clearly murky graphs are hereditary; thus to
prove that murky graphs are per_fect we need only prove that unbreakable murky graphs

are perfect.

The line graph L{G) of a graph G is the graph whose vertices correspond to the
_edges of G, such that two vertices of L(G) are adjacent if and only if the
corresponding edges of G share a vertex. K,; is the graph with six vertices whose
complement consists of two disjoint sriangles. K 3,5~¢ is the graph obtained by removing
any edge from K,, We let Ly and L, denote the line graphs of Kggye and Kgg

respectively. Drawings of L and L g are shown in Figure 4.1.

There are two kinds of unbreakable murky graphs: those that contain Lg as an
induced subgraph, and those that do not. Let I/ be an unbreakable murky graph. It U
contains L g as an induced subgraph, then U is either Lgor Lo. If U does not contain
L4 as an induced subgraph, then U can be constructed by taking two copies of a FP-free

graph, and adding a specified set of edges between the two copies. The following is a
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Figure 4.2. A mirror graph
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formal definition of such graphs, which we call ” mirror graphs™.

Define a mirror partition [R,5] of a graph ¢ to be a partition of the vertices into
sets B = {ry, .., ry} and S = {s,, ..., s; } such that
(1) Ggp and Gg are P,-free, and
{2) r; sees r; i and onlyif s; sees st if and only if

r; misses s;  if and only if s; misses ri, fori<i<ji<i

(Note that one consequence of (2) is that Gr and Gg are isomorphic.)

Any graph that has a mirror partition is called a mirror graph. With respect to a
mirror partition [R,5] of a mirror graph, a pair of corresponding vertices {rj ,sj} is a
couple, and r; Is the mate of 8; (and vice versa). Note that in a mirror graph the

vertices of a couple may or may not be adjacent. A mirror graph is shown in Fz'gure 4.2

Recall that vertices z and y are twins in a graph G if every vertex in G — {z.4}
sees both or neither of {z,y }. Lovdsz [1972a] showed that a mipimal imperfect graph
does not have twins. Olariu calls vertices u and v in a graph & antz’-t{vins if every
vertex in G — {u,v} sees exactly one of {u,v}; he proved that a minimal imperfect

graph does not have anti-twins [1986]. (His proof of this result appears in the appendix.)

Burlet and Uhry (see Lemma 5 in [1984)) observed that every P,free graph with at
least two vertices has twins. (We use this fact in the proof of the following proposition,

and frequently throughout the chapter.) We prove a similar result for mirror graphs.

The Mirror Proposition. Let F be an induced subgraph of a mirror graph G. If
F has at least two vertices then F conlains twins or anti-fwins.
Proof. Let [E ,8] be a mirror partition of G. Define

o A=(ineF) B=(iyeFy.
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:

If some k& belongs to A M B then r;,s, are anti-twins in F'. Hence we may assume
that A M| B = ¢. Now let F" be the graph induced by all v, with & € A L B let
r;,r; be twins in F'. tiecA, ] €EA (ori €B,j € B) then ry,r; (or s;,s;) are

7

twinsin F';if{ €A, 7 €B (ori € B, j € A) then r;,8; (or &;,r;) are anti-twins in

The main results of this chapter are summarized by the following two theorems.
The proof of Theorem 4.1 takes up most of the rest of the chapter. The proof of

Theorem 4.2 follows almost immediately from Theorem 4.1, and is presented below.

Theorem 4.1. If G is an unbreakable murky graph, then G is Lg, Ly, or a mirror

graph.

Theorem 4.2. Murky graphs are perfect.

Proof of Theorem 4.2. By the Star Cutsei Lemma and the fact that murky
graphs satisfy the hereditary property, we need only prove that unbreakable murky
graphs are perfect; by Theorem 4.1 we need only prove that Lg, Ly and mirror graphs
are perfect. It is a routine exercise to check that L, and L 4 are perfeet (actually, all line
graphs of bipartite graphs are perfect: this follows from a theorem due to Kénig [1936]
concerning the edge-chromatic number of a bipartite graph). That mirror graphs are
perfect follows from the Mirror Proposition, and the fact that a minimal imperfect graph

containg neither twins nor anti-twins., B

The proof of Theorem 4.1, which appears at the end of Section 4.3, is preceded by
several intermediate results: Sections 4.2 and 4.3 contain lemmas concerning properties
of unbreakable mirror graphs. As a postscript, in Section 4.4 we present a theorem

which extends Theorem 4.1 to a characterization of unbreakable murky graphs.
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Figure 4.3. L8 (top) and its complement (bottom)
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4.2 Local Properties of Unbreakable Mirror Graphs

In this section we prove several lemmas concerning unbreakable murky graphs. As
almost every result in this section is concerned with graphs which contain or do not
contain other graphs as induced subgraphs, the following abbreviation will be adopted:
we shall say that a graph confains some other graph if the latter is an induced subgraph
of the former. Similarly, a graph properly contains some other graph if the latter is &

proper induced subgraph of the former.

The definition of "twins” is extended as follows: given vertices z and y and a
subset H of the vertices of &', the vertices z and y are called fwins with respect to Hil
z and y see exactly the same set of vertices of H M (G - {z.y}). Given a vertex v
and a subset X of the vertices of a graph, we say that v is (respectively) null, partial, orl

universal on X if v sees (respectively) none, some but not all, or all, of the vertices of

X.

The L g Lemma. If an unbreakable murky graph contains L, then it is etther L,
or L.

Before proving the lemma, we present two claims. The first states how a vertex

¢an attach to LS in a murky graph; the second is a similar statement, but with the

added hypothesis that the graph is unbreakable.

Claim Attach. Let X be a subset of the vertices of a murky graph G such that X
induces Lg, and such that some verter v of G- X s partial on X. Then either there is

some verlez u in X such that u and v are twins with respect to X, or else X + v induces

-_.Lg-. o

" Proof of Claim. Label the vertices of X as in Fz'guré 4.8. Let v be an arbitrary

vertex outside X . Consider the following four cases.
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Case 1: v misses all of 1,2,3,4.
Since v sees at least one vertex in X, assume w.l.o.g. that v sees 5. Now v sees 6 (to
avoid a Py on v 51436); by rotational symmetry, v seeing 6 forces v to see 7, and v

seeing 7 forces v to see 8. But ther X + v induces L.

Case 2: v misses all of 5,6,7,8.
Since v sees af least one vertex in X, assume w.lo.g. that v sees 1. If v sees 3 then

v1573 is a Cg if v misses 3 then v 15736 is a Fy. Hence this case cannot occur.

Case 3: v sees 1 but misses 2 and 3.

Now v misses 7 (o avoid a C; on v 1237).

Subease 3.1: v sees 6,
Now v misses 5 (to avoid a C; on v6375) and v sees 4 (to avoid a 'y on

v 6341). But then v and 8 are twins with respect to X .

Subcase 3.2: v misses 6.
Now v sees 8 (to avoid a Py on v 18637) and v sees 5 (to avoid a-Fy on

v 15736). But then v 5268 is 2 C';. Hence this subcase cannot oceur.

Case 4: v sees 6 but misses 5 and 7.
Now v misses at least one of 1,3 (to avoid a C'5 on v 1573) and v misses at least one of
2,4 (to avoid a €5 on v 2574). But then this case reduces to Case 1 or (possibly rotated)

Case 3.

We now show that the proof reduces to one of the previous cases. If v misses all of
1,2,3,4 then it satisfies the hypothesis of Case 1; if v sees all of 1,2,3,4 then it satisfies
the hypothesis of Case 2 on @X. Hence we may assume that v is partial on {1,2,3,4};

next, rotational symmetry allowé us to assume that v sees 1 and misses 2. If v misses 3
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then it satisfles the hypothesis of Case 3; if v sees 3 then it satisfies the hypothesis of

Case 4 on Gy. This concludes the proof of Claim Attach. B

Claim No-Twins. Let X be a subset of the vertices of an unbreakable murky graph
G such that X induces L, Then there is no vertez v in G — X such that v is a twin with

respect to X of some verter of X.

Proof of Claim. Assume the contrary: there is 3 vertex u in X such that the set
S of all twins of ¥ with respect to X (including u itself) has size at least two. Without-
loss of generality, we may assume that u == 1 (all other cases reduce to this one by
rotation and complementation). Note that S includes no vertices of X except 1. Since
G is unbreakable, S is not a homogeneous set in & . Hence some vertex v outside S
sees some a in 5 and misses some b in §; trivially, v € X. Let A and B denote the
subgraphs of G induced by X +a¢ —1and X +a — 5 respectively. Note that v must
be partial on X (else v would have precisely one neighbour in A or precisely seven
neighbours in B, contradicting Claim Aftach) and that X + v does not induce L (else
v would contradict Claim Attach with A in place of X'). By Claim Attach, v must be a
twin with respect to X of some w in X ; since » ¢ S, we have w £ 1; now symmetry
(swapping 5 with 8, 2 with 4, and 6 with 7) allows us to assume that w is 6ne of 2.3,5,6.
If w = 3 or w = 6 then v contradicts Claim Attach with A in place of X:iffw =2
or w = 5, ther v contradicts Claim Attach with B in place of X . This completes the

proof of Claim No-Twins. B

Proof of the Lg Lemma. Let X be a proper subset of the vertices of an
unbreakable murky graph G such that X induces Lg. Since (¢ is unbreakable, X is

not a homogeneous set of &, and therefore some vertex v of G — X is partial on X
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Figure4.4. L .
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Let ¥ = X + {u}. Claim Attach together with Claim No- Twins imply that ¥ induces
L g Now we need only show that there are no vertices in G — Y. Assume the CONtIary;
then there is some vertex w in G — Y that is partial on Y. But then it is possible to
delete some vertex v of Y so that w sees either at most three or at least flve vertices of
Y -{v} But Y —v induces L, and since w does not see exactly four vertices of
Y -{v}, ¥ +w ~v does not induce L, Now either Claim Attach or Claim Ne-

Twins is contradicted. B

Let L be the class of murky unbreakable graphs that contain L g as an induced
subgraph and M the class of all other unbreakable murky graphs. From the Ly Lemma
it follows that L contains at most two graphs, namely Ly and Ly (We have not yet
determined whether Lg and Ly are in L. In fact, they are. However, since it is not
necessary to establish this in order to prove Theorem 4.1, we postpone this task until

Section 4.4.)

We now turn our attention to M. By definition, no graph in M contains L g asan
induced subgraph. The following lemma shows that in fact the class M is even more
restricted. We define L, to be the graph obtained by removing any vertex of degree

four from L ;.

The L ; Lemma. No graph in M contains L ..

Proof. Let G Dbe a graph in M. Argue by contradiction; suppose that X is a set
of vertices such that Gy is L., labelled as in Figure 4.4. (The graph in Figure 4.4 can
be obtained from the graph in Figure 4.3 by removing vertex 1.) Since & is
unbreakable, there must be some path from 5 to 8, none of whose vertices is 3 or sees 3.

Consider any shortest such path P. Since G is murky, P contains at most three
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interior vertices.

Claim 1: P does not contain exactly one interior vertex.
Suppose it did; label the interior vertex 1, so that P = 518. Note that 1 misses at least
one of 2,4,6,7 (to avoid a 135 on 137245); assume without loss of generality that 1 misses
7. Now 1 sees 4 (to avoid a C'; on 15748), and I misses 6 (to avoid a C; on 16375), and

s0 1 sees 2 (to avoid a C'; on 18625). But then {1,...,8} induces L 4 contradiction.

Claim 2: P does not contain exactly two interior vertices.
Suppose it did; label the vertices 0 and 1 so that P == 5018. Then O sees 7 (suppose
not: then (if O sees 6) 05736 is a C'5 or (if 0 misses 6) 057368 is a F;). By symmetry, 0
sees 2, 1 sees 4, and 1 sees 6. Now, 0 misses 4 (tb avoid a 136 on 035427). By symmeiry,

0 misses 6, 1 misses 2, and 1 misses 7. But then 02341 is a g, contradiction.

Claim 3: P does not contain exactly three interior vertices.
Suppose it did; label the vertices 9.0,1 so that P = 50018. Arguing as in Claim 2,
vertex 9 sees 7 and 2 but misses 4 and 6, vertex 1 sees 4 and 6 but nﬁsses 7 and 2. Now
the graph induced by {9,7,4,1,6,2,3} is isomorphic to that induced by {2,...8}:
furthermore, 0 sees 9 and 1 but misses 3. Therefore, by Claim 1, {9,7,4,1,6,?.3,3,0}

induces L, contradiction. B
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The next lemma is of the following form: if a graph G in M properly contains a
certain subgraph S, then a certain subgraph T of G properly contains S. In this case,

S = FPyand T = (. Later, we present another lemma of this form.

The P; Lemma. Let G be a graph in M. Then every P, in G is contained in a Ce.

Proof. We will call a F; bad if it is not contained in a Cs. We begin with a
simple observation.
If abede is a bad Fy in G, and some vertex f sees a but not ¢, then f sees b. *)

(Otherwise, fabed is a C'; or fabede is a B,.)

Define a bypass of a Py abcde to be a chordless path P from a to e, such that
every interior vertex of P misses ¢. Note that in an unbreakable graph, every Py abede
has a bypass (otherwise, ¢ is in some star cutset that separates ¢ and e); we will use
this fact repeatedly in the proof. Define the indez of a P (in an unbreakable graph) to
be the number of interior vertices in a shortest bypass. Note that in a murky graph, the

index of a F; is at most three.

Let G be a graph in M. To prove the lemma, we will show that there is no bad P

in G'; we do this by showing that there is no bad P, with index one, two, or three.

Claim 1:  No bad F; has index one.
Assume the contrary; let 12345 be a bad F;, with bypass P = 165. By (*), 6 sees 2 and
4. The graph induced by {1,..,6} is shown in Figure 4.5.1. Now, 63142 is a P, in G;
furthermore, it is a bad Py of G. (Assume the contrary; then there is a vertex 7 that
sees 3,1,4 but misses 2,6 in G'. 1If 7 sees 5 then 73265 is a C';, else {1,...,7} induces [ ;;

contradiction.) Now 63142 must have a bypass in G .
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Figure 4.5.2
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Claim 1.1: 83142 does not have index one.
Assume the contrary; let ¢ = 672 be a bypass of 63142 in & . Thus, using (*) with
63142, in G, 7 sees 1 but misses 6,3,4,2. But 7 seeing 1 and missing 2,3 contradicts (*)

with 12345. This concludes Claim 1.1.

Claim 1.2: 63142 does not have index two.
Assume the contrary; let ¢¢ == 6782 be a bypass of 63142 in (v . Thus, in &, vertex 7
sees 2,1, but misses 6,8; vertex 8 sees 6,1 but misses 2,7. Using (*) with 63142, 7 misses

3, and 8 misses 4; using (*) with 12345, 8 sees 3. Now it follows that

7 misses 4 (to avoid a C'g on 74381),
7 misses 5 (to avoid a (' on 72345),
8 sees 5 (to avoid a Py on 718345).

'The subgraph of G' induced by {1,...,8} is now the graph in Figure 4.5.8. Now note
that 71643 is 2 bad F,. (Assume the contrary: let 716430 be a C4. Then 9 sees 7,3 but
misses 1,4,6. Thus 9 misses 5 (to avoid a 5 on 97165) and 9 sees 8 (to avoid a Cson

97183); finally, if 9 misses 2 then 97268 is a C'g, if 9 sees 2 then 913782 is a P,)

Claim 1.2.1: 71643 does not have index one.
Assume the contrary; let £ = 793 be a bypass of 71643. Thus, using (*) with 71643,
vertex 9 sees 7,1,4,3 but misses 6. But if 9 misses 2 then 97264 is a C, if 9 sees 2 then

963142 is a P;. This concludes Claim 1.2.1.

Claim 1.2.2: 71643 does not have index two.
Assume the contrary; let £ = 7903 be a bypass of 71643. By (*) with 71643, vertex 9
sees 1,7,0 but misses 3,6; vertex 0 sees 3,4,9 but misses 7,8. Now
0 misses 1 (if 0 sees 1 then O misses 2 (to avoid a F, on 063142), and so

05623 is a U  or {1,2,3,‘4,5,6,0} induces f7 );



0 sees 4

g sees 8

0 misses 8

9 sees 2

0 misses 2
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(to avoid a €' on 91640),
(to avoid a C'g on 91834),
(to avoid 2 P, on 960148),
(to avoid a C'5 on 91234),

(to avoid a P; on 960142), and finally

If 0 sees 5, then 05623 is a 'y, else 045812 is a ;. This concludes Claim 1.2.2.

Claim 1.2.3:

71643 does not have index three.

Assume the contrary; let £ = 79203 be a bypass of 71643. By (*) with 71643, vertex ¢

sees 1,7, but misses 3,6,0; vertex z sees 9,0 but misses 3,6,7, vertex O sees 3,4,2 but

misses 6,7,9. Now

0 misses 1

0 sees 8

0 misses 5

T sees 4

T misses 1

g sees 4

0 sees 2

g sees 8

9 sees 5

z Inisses 2

Z misses 8

T sees 5

(if 0 sees 1 then O misses 2 (to avoid a P, on 063142), and so
05623 is a C'5 or {1,2,3,4,5,6,0} induces L, );
(if O misses 8 then O sees 5 (to avoid a Fy on 045817),
but then either 02185 or 05623 is 2 Cy),
(if 0 sees 5 then 05623 is a C'g or 063524 is a Py,

(if  misses 4 then 70461 is & C, or 2 04617 is a Fy),

(if z sees 1 then z 1834 is a C; or 2 60148 is a F)),

(to avoid a C'5 on 9164zx),
(to avoid a € on 91234),
{to avoid a €5 on 94381),
(to avoid a P, on 695148),
(to avoid a P, on 96z 142),
(to avoid a P, on 96z 148),

(to avoid a Py on z 45812),
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0 misses 2 (6o avoid a C; on 2z 5620).

But now {x ,0,3,2,6,5,8} induces L7. This contradiction justifies Claim 1.2.3, and

therefore Claim 1.2.

Claim 1.3: 63142 does not have index three.
Assume the contrary; let ¢ = 67802 be a bypass of 63142 in &G . Thus, by (*), in G
vertex 7 sees 1,2,9 but misses 3,6,8; vertex 8 sees 1,2,6 but misses 7.9; vertex 9 sees 1,6,7

but misses 2,4,8. By (*) with 12345, 0 sees 3. Now

8 misses 3 | {to avoid a 135 on 137892),
8 misses 4 (to avoid a C'5 on 84391),
8 misses 5 (to avoid a C'g on 82345),
9 sees 5 e {to avoid a P, on 543918),
7 sees 4 (if 7 misses 4 then 72345 is a ' or 827954 is a Py,
7 sees § (to avoid a P, on 675149).

But then removing vertex 6 and relabelling vertices 7,8,9 as 6,7,8 respectively gives the
graph in Figure {.5.2, and we are done by Claim 1.2. This concludes Claim 1.3, which

(finally) concludes Claim 1.

Claim 2:  No bad F; has index two.
Assume the contrary; let 12345 be a bad P; with bypass P = 1675. By (*) with 12345,
6 sees 1,2,7 but misses 3,5; 7 sees 5,4,6 but misses 1,3. Now 7 must see 2; suppose not.
By Claim 1 (with 7 in place of 5), 12347 must extend into a C'g, say 123478. But then
(*) is contradicted by 12345 and 8. Thus 7 sees 2; by symmetry, 6 sees 4. The graph

induced by {1,...,7} is shown in Figure 4.5.8.

Now note that in G 63142 is a bad Ps. (Assume the contrary; let 863142 be a C

in G. Then either 84721 is a C'5 or 682417 is a F.)
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Claim 2.2: 63142 does not have index two.
Assume the contrary; let S = 8892 be a bypass of 63142 in G . Arguing as in the
beginning of Claim 2, in & both 8 and 9 see 3 and 4. But then, in &, 9 sees 1 but

misses 2,3, which contradicts (*) with 12345. This concludes Claim 2.2.

Claim 2.3: 63142 does not have index three.
Assume the contrary; let .S = 68092 be a bypass of 63142 in & . Thus, using (*) with
63142, in &, 8 sees 1,2, but misses 3,8,0; 9 sees 1,6,8 but misses 2,4,0; 0 sees 1,2,6 but

misses 8,9. Now

9 sees 3 (if 9 misses 3 then (*) with 12345 is contradicted),
0 misses 3 (to avoid a Py on 138092),

0 misses 4 (to avoid a C'¢ on 01934),

8 misses 5 (if 8 sees 5 then 12345 is bad F; with index one),
0 misses 5 (if O sees 5 then 12345 is a bad P; with index one),
9 sees 5 (to avoid a F; on 019345), and

8 sees 4 (to avoid a Py on 028954).

Now 83149 extends to a U4 in G, say 83149z . (Suppose not; in G, O sees 8,9 but
misses 1, and so 83149 is a bad F; with index one, contradicting Claim 1.) Then, in &,
z misses 2 (to avoid a Py on r83142). But in @, z sees 2 but misses 1,4, which

contradicts (*) with 63142. This concludes Claim 2.3, and also Claim 2.
Claim 3:  No bad F; has index three.
Assume the contrary; let 12345 be a bad F; with bypass P = 16785. Thus 18785 is a

chordless path such that 3 misses 6,7,8. Since 12345 has index three, 1 misses 7 and 8, 5

misses 6 and 7; by (*), 6 sees 2 and 8 sees 4.
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If 6 misses 4 then 62345 is a P, of index at most two (consider 6785) and hence not
a bad P;, by Claims 1 and 2; thus there is a C'g of the form 623459, contradicting the
assumption that 12345 has index three (consider 1695). Hence 6 sees 4; by symmetry, 8
sees 2. The subgraph of G induced by {1,...8} is shown in Figure 4.5.4 (the vertex 7

may or may not see 2, and may or may see 4).

Now suppose that G contains a C‘s' of the form 631420. Then

0 sees 8 (to avoid a C'; on 01284),
0 sees 7 (to avoid a C; on 01678),
2 misses 7 (to avoid a P on 718602),

and finally 76230 is a g, a contradiction.

Hence we may assume that 63142 is a bad P in 5‘"; by Claims 1 and 2, its index is
three. But then we obtain the desired contradiction by forgetting all about 7 and 8 and
following the proof of Claim 2.3 (which does not refer at all to vertex 7 of Figure 4.5.9).

This concludes the proof of Claim 3, and the Py, Lemma. B
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The next lemma is a stronger statement than the [ 7 Lemma, in that it implies that
two particular six-vertex induced subgraphs of L, (and their complements) are forbidden
induced subgraphs of graphs in M. This lemma will be used in the proof of the Co

Lemma.

The Stronger Lemma. If G is a graph in M, then G does not contain either
(*) a Py 12345 and a vertex 6 that sees 1,2,4,5 but misses 8, or

(*¥)  a P; 12345 and a vertez 6 that sees 2,9 but misses 1,4,5.

Proof. To prove (*), note that by the Py Lemma the P, 24136 must extend to a
C¢. Thus there is a vertex 7 that sees 1,3,4 but misses 2,6 in G'. But this is impossible,

since if 7 sees 5 then 23756 is a €5, whereas if 7 misses 5 then {1,...,7} induces L ,.

To prove (**), note that by the P; Lemma the P5 12345 must extend to a Cg. Thus
there is a vertex 7 that sees 1,5 but misses 2,3,4 in . But this is impossible, since if 7

sees 6 then 34576 is a C';, whereas if 7 misses 6 then 634571 is a P;. B
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Figures 4.6.1 and 4.6.2 (top and bottom)
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The following lemma describes restrictions on the ways in which vertices of a graph
G in M can attach to one of two particular seven-vertex subgraphs of . This result

will be used in the C'g Lemma, and also in the Second Extension Lemma.

The Little Local Lemma. Let X = {rirj.r,8,8; 8,0} be a subset of the
vertices of a graph G in M.
(1A)  If Gy is the graph in Figure 4.6.1 and there are vertices w,w; € G — X such
that w; sees s;,5; but misses ;T v, and wJ sees s;,8; but misses r;,r, v, then esther
w; or wy sees 8;,8;,5; but misses ry,r; vy v,
(1B) If Gx is the graph in Figure {.6.1 and there is a verlez w € G ~ X such that w
sees s;,8, but misses r;,r,v, then w sees s; 187,85 but misses r; TiaTe 0.
(2A)  If Gx is the graph in Figure 4.6.2 and there is a verter w € G — X such that w
sees 57,5, but misses ri rp,v, then w sees 8;,8;,8; but misses r; TG

(2B) If Gy is the graph in Figure 4.6.2 and there is a vertex w in G — X such that w

sees 8;,5; bul misses r;,r, v, then w sees $i,87,8; but misses r; ,r;,r, v,

Proof. To prove (1A), assume the contrary. Now w; must see r; (if not, then w;
must see s; to avoid a Py on w; s, r;vr,s;, and we are done) and therefore miss s; (to

avold a C5 on w;r;vrys;). By symmetry, w; must see r; and miss s But then

j' «

wyw;s;rs; isa Cgorws;rvr;w; isa P, acontradiction.
To prove (1B), note that w misses r; (to avoid a €'y on w r; v rys;) and sees s; (to

avoid a Pyon ws; rjvr ;).
To prove (2A), note that w misses r; (to avoid a Cgon wr;vr 5;) and sees s; (to
avold a Fyon ws;rjvrs;).

To prove (2B), note that w seeszsj (to avoid a C'g on w s; §; 7; 8 ) and thus misses

r; (toavoida Csonws;r,vry). B
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The following lemma describes how certain seven-vertex induced subgraphs {of
graphs in M) that contain C, extend to other induced subgraphs, This lemma will be
used as the basis case in the proof of Theorem 4.1.

The C4 Lemma. Let X = {r,-,rj,rz »5i,87,8,v ) be a suf-aset of vertices of a
graph G in M.

(L) If Gy is the graph in Figure 4.7.1A, then there is a verter w in G, such that
GXU{w} ts the graph in Figure 4.7.1B.
(2) If Gy is the graph in Figure 4.7.2A, then there is a vertez w in G, such that
GXU{w} is the graph in Figure 4.7.2B.
(3) If Gy is the graph in Figure {.7.3A, then there are vertices w,z,y tn G, such that

GXU{w,z v} ts the graph in Figure 4.7.8B.

(4) If Gx is the graph in Figure {.7.4A, then there are vertices w,z,y in G, such that

GXU{w,x,y} is the graph in Figure 4.7.4B, Figure 4.7.4C, or 4.7.4D.

Before proving the lemma, we present a claim which will be used in two of the four
cases of the proof. Throughout the claim, (*) and (*%) refer back to the Stronger

Lemma.

Claim. Let 123456 be a O in a graph G in M, and let 7 be a vertex of G that sees
2,6 but not 3,4,5 (7 may or may not sce 1). Then there is a vertex 8 in G that sees 1,85

but not £,6,7 (8 may or may not see 4).

Proof of Claim. Since G is unbreakable, there must be a path from 1 to 3, none

of whose vertices sees 7. Let P be any shortest such path. Note that P is chordless.

Case 1: P has exactly one interior vertex.

Let P = 183. If 8 sees 2 then
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8 sees 6 (if 8 misses 6 then 8 misses 5 (to avoid a ¢, on'82765), but now
81654 is a U5 or 827654 is a Fj),
8 misses 5 (if 8 sees 5 then 8 with 32765 contradicts (¥)), and then

iff 8 sees 4 then 8 with 34561 contradicts (*), else 83456 is a C ;5; contradiction.

So 8 misses 2. Now 8 misses 6 (to avoid a C'5 on z3276), and finally 8 sees 5 (to

avoid a P, on 832765). Thus 8 is the desired vertex.

Case 2: P has exactly two interior vertices.
Let P == 1zy 3. If z sees 5, then we are in Case 1: switch 2 with 6 and 2 with 5. Hence
we may assume that r misses 5. Then r must see 8 {(if not, = 1654 is a 6"5 or x 16543 is

a F;). Thus z must see 2 (else z with 56123 contradicts (**)).

If  sees 4 then, by (1) with z in place of 7, some vertex 8 sees 1,3,4,5 and misses

2,6,r ; note that 8 misses 7 (to avoid a C'5 on 872z 4).

Hence we may assume that z misses 4. Applying the argument of Case 1 with z
in place of 1 and with y in place of 8, we conclude that Yy sees r,3,5 and misses 2,8,7.
Now by (1) with y in place of 4 and with z in place of 7, some vertex 8 sees 1,3,y ,5 and

does not see 2,6,z ; note that 8 misses 7 (to avoid a C 5 on 878zy ).

Case 3: P has exactly three interior vertices.
Let P = liyz 3. As in Case 2, we may assume that z misses 5, sees 6, sees 2 and misses
4. By Case 2, there is a vertex w that sees z,3,5 and not 2,6,7. Il w sees 1, then we
may set 8 = w with r in place of 1; hence We may assume that w misses 1. By (1)
with w in place of 4 and with z in place of 7, some vertex 8 sees 1,3,w,5 and misses
2,6,7; note that 8 misses 7 (to avoid a C'; on 8762w ). This conecludes the proof of the

Claim, H
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;U

Proof of the Cy Lemma. To prove (1), by the P, Lemma the P orir s, 8;

must extend to a O suppose that some vertex w sees $;,8;,7; but misses r; ,v. Then

w does not see r; (else wr;vr;s; is a ) and w sees s; (else w s, rps;ry is a Oy

Thus (1) is proved.

To prove (2), by the Py Lemma the Py s, ;v r; 5; must extend to a C'q; thus there

is a vertex w; that sees s;,s; but misses r;,r,,v. Similarly, the Py s r;Ur;s; must

extend to a C'4 thus there is a vertex w; that sees g, ,8; but misses resriv. Now, by

J
(1A) of the Litile Local Lemma, it follows that either w; or w; is the desired vertex w.
To prove (3), by the Claim (with vertex v and the Cy s, 7, s;rys; 7y In place of 7
and the (', 123456 respectively) there is a vertex z that sees §;,8;,8; but misses
ry.r;,v. Similarly, (by the Claim with vertex s, and the Covris;r s r;) there is a
vertex y that sees v,s;,s; but misses r; ,;ri.8 . Next, (by the Claim with vertex z and

the C'g 1y 5;7; v ry 55 ) there is a vertex w that sees r; 7 r; and misses z,s;,8; .

Now
T misses y (toavoid a Cyonz s, r;vy),
T sees r, (to avoid a Fyon rys;2 8,75 0),
¥ sees r; (to avoid a Ps on 7, S;Yvr;s),
w sees s, (toavoida Cson wryz s 1)),
w misses y (to avoid a C';on s, wys; z),
w Sees v (toavoid a Cson wryyvr;), and (3) is proved.

To prove (4), argue as in the beginning of the proof of (3): there are vertices z N
such that vertex z sees s;,s;,5; but misses ri,T7,¥, and vertex y sees v,s;,s; but

misses r;,r;,s;. Note that z sees y (to avoid a C  on §;vys;z). There are three

cases to consider.
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Case 1. r; misses .

Applying the Claim to the T4 on 7y s; r; v r;§; and to vertex z, we find a vertex w that

sees ry,7y,r; but misses ¢,s;.5; . Now
w misses s, (to avoid a C'son sy wrys; 1),
w misses y (to avoid a Cson wyzs r;),
Y sees r, (to avoid a Fgon ys; r, wr; 5, ),
w sees v (to avoid a Fyon v r; wr, 5;7),

and the graph induced by {s;,r; 185,758 ,7;,0,2,9,w } is that shown in Figure 4. 7.4B.

Case 2: r, misses see .

Applying the Claim to the C'g on rys; rjsgr;8; and to vertex y., we find a vertex w

that sees r;,r,,r; but misses 5;,8;,Y¥ . Now
w misses v (to avoid a Csonvwr s y),
w misses z (to avoid a C'yon wz v r;),
x sees ry (to avoid a Pyon zs;r, wr;v),
w sees § (to avoid a P; on s rywrys;y),

and the graph induced by {s,,r; 85,7 ,8;,75,V,2 .,y ,w } is that shown in Figure 4.74C.

Case 3. r; sees z and y.
Applying (2) to the T4 on sjvzriys, and to vertex r, we find a vertex w that sees (in
G) s;,r;,r;,v and does not see $;,2,y . Now
w misses s; (to avoid a C'5 on w s; S;7i ),
w sees r; (to avoid a Fg on wr; FEX Y ),
and the graph induced by {s,.r;,s;,r;.8;,7;,v,2,y,w } is that shown in Figure 4.7.4D.

This concludes the proof of the Cy Lemma.
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4.3 Strong Mirror Graphs

It is easier to prove Theorem 4.1 by dealing only with a certain subeclass of mirror
graphs that includes all unbreakable mirror graphs, rather than by dealing with 5,11
mirror graphs. This subclass is the class of "strong mirror graphs™; we present a formal
definition shortly. It turns out that a mirror graph is unbreakable if and only if it is a
strong mirror graph. As we did with Lg and Lg, we Will postpone the proof of

unbreakability, i.e. the "if” part of the previous statement, until Section 4.4.

We shall say that a Py-free graph G is strong unless (and only unless) G or @ has
precisely two components and one of these components is a singleton. The following
lemma is a useful tool for working with strong Pfree graphs. The graph 2K, referred

to in the lemma is the graph with two components, each of which is a single edge.

The Rip-Off Lemma. Let G be a strong Py-free graph with al least four vertices
such that neither G nor G is 2K, Then G contains twins z,y such that G — z and
G -y are strong Py-free graphs. Furthermore, if G has an isolated vertex z, then we

can choose z,y both distinct from =.

Proof. First, let us prove only that G contains twins c ,d such that both G - ¢
and G — d are strong P,-free graphs. Let a,b be twins in G . Since @ - ¢ and G-
are isomorphic, we may assume that G — e is not strong (otherwise we are done by
setting ¢ = a, d == b ). Replacing G by G if necessary, we may assume that G - ¢
has precisely two components and that one of them is a singleton. Note that the
singleton is b (else ¢ would not be strong); call the other component ¢ ; observe that

@ is a component of G@. Now let ¢,d be any twinsin Q .

To complete the proof, assume that one of ¢ ,d is isolated in & {otherwise we can

set £ = ¢ and y = d). Then both ¢ and d are isolated in G'. If ¢ has no edges at
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{1,2,3,45,6,7,8 }

{5,6,7,8}

Figure 4.8. AP, free graph and its decomposition tree
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all then any two vertices z,y distinct from ¢ and d will do; else ¢ has a big

component ¢ and any twins z,y in Q@ will do. |

Strong mirror graphs are defined as follows: start with the deﬂnition of a mirror
graph, ‘insist that the P-free graph Gp be strong, and specify exactly which couples of
the partition induce edges of the graph (that is, for which couples {rj ,sJ-} the vertices
r; and s; are adjacent). This speciflcation is in the form of a certain 0-1 function f; this
function is defined in terms of a decomposition of P,free graphs that follows from
repeatedly applying Seinsche’s theorem. (Recall Seinsche’s theorem from Chapter 1: if a
P,-free graph has at least two vertices, then either the graph or its complement is

disconnected.)

.’

We now present a recursive definition of a graph DT (G ) whose vertices correspond
to subsets of vertices of another graph 7. In order to avoid ambiguity, we will refer to
the vertices of DT (G) as nodes. The decomposition tree DT (@) of 2 Ppfree graph G
is the rooted tree such that:

(1} i G has only one vertez v, then the root of DT{G) is the vertex v, and
there are no other nodes in DT(G), and

(2} if G has more than one vertes, then the root of DT(G) z.s the set of all
vertices of G, and the nodes adjacent to the root are DT(G ), ..., DT(G, ), where
-G'l, vy Gp are the induced subgraphs of G that correspond to the components of

whichever of G or G is disconnected.

A Pgfree graph and its decomposition tree are shown in Figure 4.8, Note that
every vertex of G is a leaf of DT (G'). Also, every leaf of DT (G) is a vertex of @, and
every node of DT (G') that is not a leaf is a subset of at least two of the vertices of G .

Note also that DT (&) is identical to DT (&).
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We need one more definition before we can define the 0-1 function f Let G bea
P,-free graph with at least two vertices. For every vertex v of a P,free graph G with
at least two vertices, define the parent P{G,v) to be the parent of v in DT (G), (ie. the
node of DT (G) adjacent to the leaf v). For example, with respect to the P-free graph
G shown in Figure 4.8, the parent of 1 is the root of DT (G) (namely, the set of all
vertices of ), the parent of 2,3, and 4 is the node {2,3,4}, the parent of 5 and 8§ is the

node {5,6,7,8}, and the parent of 6 and 7 is the node {6,7}.

Now define the function f{G,v) so that
f(Gw) =0 i Gpg .y is disconnected, and
AGw)=1 if Gpg s connected.
Note that v is a singleton in whichever of GP(G,U} or @F(G_,,) is disconnected. For the

graph G shown in Figure 4.8, f{iG ,v) = 0,1,1,1,1,0,0,1, for v — 1,2,...,8 respectively.

Now that f(G,v) is defined, we can formally define strong mirror graphs. A
partition [R ,5] of the vertices of a graph G is called a stromg mirror parlition if
conditions (1) and (2) of the definition of a mirror partition are satisfied, and if

(3) Gg is a sirong P,-free graph, and
(4) r; seess; if and only if  f(Gp,r;) =1, for all r; €R. |
A graph with a strong mirror partition is a strong mirror gmph.. A strong mirror graph

is shown in Figure 4.9.
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The classes of P,-free graphs and murky graphs are self-complementary. We now

show that the same is true for the classes of mirror graphs and strong mirror graphs.

The Complement Lemma. Let [R,S] be a (strong) mirror partition of G. Then
the partition [R,S], with vertices labelled as in the partition of G, is a (strong) mirror

partition of G .

Proof. The conditions (1), (2), (3), (4) mentioned in the proof refer to the

definitions of mirror partition and strong mirror partition.

Let G be a graph with mirror partition (R ,S]. Since the complement of a Pfree

graph is Py-free, the partition [R ,5] of G satisfles condition (1).

Let r,, and r, be any two vertices of B ; r,, sees Tp in G if and only Iy mMisses r,

in G. From (2) it follows that in G

r, Iisses r

p, ifand only if s, misses s

N if and only if

fm Sees s,  If and only if s, seesr,.
Thus in G
r., seesr

», Handonlyif s, seess if and only if

»
rm Misses s, if and only if s, misses Tos

and (2) holds for the partition [R,S] of &. Thus [R,S] is a mirror partition of & .

Now assume that {R,S] is a strong mirror partition of G ; we will prove that it is
also a strong mirror partition of G. | By the previous argument we need only prove that
(3) and (4) hold for [R,S] with respect to G. But (3) holds trivially. To see that (4)
hoids, note that DT(H) = DT (H) for any Pfree graph H:; thus HP(H,,,) is the
complement of Ep (F,vy and so (it H has at least two vertices) f(i ,v) + f(H,v) = 1.

Now set H = Gy, and use the fact that (4) holds for [£2,5] with respect to ¢. B
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The graph shown in Figure 4.9 is = strong mirror graph, since the partition
suggested by the drawing is a strong mirror partition. {Partition the vertices into the
"upper set” and the "lower set”; the couples are the pairs of vertically aligned vertices.
Note that the subgraphs induced by “upper set” and "lower set” respectively are
isomorphic to the graph shown in Figure 4.8) On the other hand, the partition
suggested by the drawing of the mirror graph in Figure 4.2 is not a strong mirror
partition (in fact this graph has no strong mirror partition}. In Section 4.4 we will say
more about. which mirror graphs have strong mirror partitions. First, however, we we
wish to prove Theorem 4.1. With this goal in mind, we state two resuifs concerning the

function f.

The Localization Lemma. Let G be a P,-free graph and let H be a homogeneous

set in G. Then f(G,z}) = [(Gy,z), foralze H.

Proof. Consider an arbitrary vertex z in H. The Complement Lemma allows us
to assume that f(G,z) = 0. We may assume that Gy ,z) = 1, for otherwise we are
done. Let A be the parent of z in DT(G); since f(G ,z) = 0, vertex z is isolated in 4.
Let B be the parent of z in DT (Gy); since f(Gy,z) = 1, vertex z sees all the
remaining vertices in B. It follows that the intersection of 4 and B coﬁtains only z,
Since both A and B have at least two vertices, there is some vertex ¢ € A — B, and

some vertex b € B - A .

Note that A is homogeneous in ¢ and that B (being homogeneous in Gy ) is also
homogeneous in &', Since a misses z, it must miss all of B; in particular, ¢ misses b .

Since b sees z, it must see all of B; in particular, & sees @ ; contradiction. B
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A special case of the Localization Lemma asserts that AG,2) = fIG,y) =
whenever z,y are adjacent twins and that f(G,z) = f(G,y) = 0 whenever z.,y are

non-adjacent twins.

The following lemma is also concerned with f and with twins,

The Twin Lemma. Let G be a P,-free graph with at least three vertices. If z,y
are twins in G then f{G,z] = f(G-z, z) = f(G-y, z), for all zin G — {z,y}.

Proof. Argue by induction on |G'|. Since AG.z) + fIG,z) = 1 for all P,-free
graphs G, we may assume that G is disconnected: its vertices can be partitioned into
non-empty disjoint sets S, 9,, so that no edge has one vertex in each S;. Iz and y
belong to distinet S; s, then each vertex distinct from both z and ¥ misses at least one
of them, and therefore it misses both; in that case, we can redefine S,, S, by setting S
= {z ,y} and letting 5'2 consist of all the remaining vertices.

Hence we may assume that 2,y € S,. To prove the lemma for all = in &, distinet
from both 2 and y, we may assume that }S,] > 3 (else there is nothing to prove); the
induction hypothesis guarantees that

f(GSI, z) = f(Gsl—:c, 7} = f(G'Sl—y, z) whenever z € Sy, z 5% 1 ,y;
the Localization Lemma guarantees that
[G.2) = f(Gs, 2), f(G—x,2) = [(Gsr5,2), G-y, 2) = [Gs-y, z).
-Now combining these two sets of equalities yields the desired conclusion.
To prove the lemma for all z € §,, we may assume that [So] > 2 (else (G ,z)=

_ f(G’—m z) = f(G—y z) = O for the smgleton z in 5'2, a,nd we are done) Clea.rly, .5’2 is

o a homogeneous set of G G’—a: and G’ y, now the Localzmtzon Lemma 1mp11es the ‘

desired conclusion.
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Having built up a repetoire of results concerning J. we are able to present some lemmas

concerning strong mirror graphs.

The Reduction Lemma., Let G be a strong mirror graph with at least eight
vertices such that neither Gp nor Gp is 2K, Then there are twins ri,r; in Gp such
that either
t&) [R—r; ,5-s; | is a strong mirror partition of G - {ri,s; 1,

[R-r;,5-s; ] is a strong mz‘rror.partz'tz'on of G- {r;,s;}, and
[(Gp-ri;rj) = [Gr-rj,1;) = f(Gg,1;) = f(Gy,r;), or
b) [E—r; ,5-s; [ is a strong mirror partition of G - {rie; ),
[R—r;,5-s; | is a strong mirror partition of G - 17,8}, and
[Gr-ri,r;) = [Gr-rj,r;) # f(Gp,r;) = [Gg,rj).
In all cases, all sets {rk ,8p } with k 5£ 4,7 are couples of these strong marror partitions.

Furthermore, if Gy has an isolated vertex r,, then we can choose t,7 both distinct from i,

Proof. By the Rip-Off Lemma, we find twins r;.r; in Gp such that Gp~r; and
Gp—r; are strong Pgfree graphs, and such thast, for any given isolated vertex of r,,
both 7,7 are distinct from ¢. By the Twin Lemma,

HGp-riry) = f(Gp —r;.7;) = f(Gr.rp) whenever k 3£ ¢,7.
Note that Gp~r;, G -r;, Gg—s;, Gg —8; are all isomorphic and that
[Gr-r;.r;) = KGp-r;,1).
In addition, note that
Gy ,r;}y = [(Gg,r;} = 1 if r; sees i,
AGp.r;) = f(Gg 73) = 0 if r; misses r;
(use the Localization Lemma with G = Gp, H = {r;,7; }). Hence (a) holds if

f(Gg~ri,r;) = f(Gp ,r;), and (b) holds in the other case. B
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One difficulty that must be overcome in proving theorems that concern strong
mirror graphs is that a strong mirror graph can have more than one strong mirror
partition. For example, the strong mirror graphs shown in Figures 4.'10, 4.'11, and 4.12
are jsomorphic and yet have different strong mirror partitions. The following two
lemmas show how this non-uniqueness can be exploited. In particular, the first of these
lemmas shows that under certain hypotheses it is possible to “repartition” a strong
mirror graph, i.e. find some other strong mirror partition of the graph. The second
lemma shows that any given strong mirror graph has a strong mirror partition ttht

"isolates” any given vertex of the graph.

The Repartitioning Lemma. Let G be a strong mirror graph with a strong
mirror partition [R,Sf, and suppose that whichever of Gp. or Gp is disconnected has
some big component. Let R, be the set of 'ue;'tz'ces of such a component and let S be the
set of mates of vertices in R ,. Define R' = R, T‘ S-8,and 8 =8, + R - R,

" Then the partition [R',S'] in which the couples are the same as the couples of [R,5] s a

strong mirror partition of G.

Proof of Lemma. Label the vertices of R’ and S’ so that couples of [R',S T are
couples of [R,5], i.e. let r;' = r; forallr; in B, and let rj’ =s; forall s; in S - §;
let s; = s; for all s; in S, and let sj' = r; foralls; in R — R,. To prove the lemma
it suffices to confirm that the following four properties hold.

(1) Gg: and G4, are Ppfree,
(2)  r; sees rj' if and only if s,-’ sees sj’ if and only if
r,-' misses sj’ if and only if s,-' misses rJ.,-I, for all 2 7é 7,

(8) Ggp: and Gy are strong Pyfree graphs,

{4) rj’ sees s_?-' if and only if f(Ggr: ,r_,-’) =1, for all rj-' in .
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Figure 4.10 shows a strong mirror graph; the partition suggested by the drawing
(i.e. "upper part” and "lower part”) is a strong mirror partition. The graph in Figure
4.11 can be obtained by repartitioning the graph in Figure 4.10 as follows: let B 1 be the
leftmost component of the *upper part” of the graph in Figure 4.10, and repartition as
described in the Repartition Lemma. Similarly, the graph in Figure 4.12 can be obtained

by repartitioning the graph in Figure 4.11.

The Isolation Lemma. Let G be a graph with a strong mirror partition [R,S5],
and let v be any vertex of G. Then there is a strong mirror partition [R ',S’] of G such
that the couples of [R',S'] are the couples of [R,S] and such that v is a singleton in

whichever of Gg+ or Gy, is disconnected.

Proof of Lemma. Assume that Gp is disconnected (the following argument
holds if Gp is replaced with Gp ). Let R, be the set of vertices of B in the component

of Gp that contains v. The proof is by induction on |R .

If |R,| = 1, then [R,S] is the desired partition. Suppose then that B > 2. Let
R’ and 8’ be as defined in the Repartitioning Lemma. Consider the strong mirror
partition [R',§] of . Note that Gr« is disconnected and has at least three
components, Let R; be the set of vertices of B induced by the component of @—RJ
that contains v. Since R, is a proper subset of R, |Rs| < |R,. The lemma now

follows by inductive hypothesis and the Repartitioning Lemma. B

The Isolation Lemma is illustrated by the graphs shown in Figures 4.10, 4.11 and
4.12. Let v be the upper leftmost vertex in the graph in‘Fz'gure 4.10. Figure 4.11 and
Figure .12 show the sequence of two repartitions that isolate v . (The vertex v appears

as the upper leftmost vertex in all thfee drawings.)
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Figure 4.11
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The following two lemmas describe restrictions on how vertices in graphs in M can

"attach” to strong mirror subgraphs.

The Zero-Two Lemma. Let H be a graph in M, let G be a strong mirror
subgraph of H, and let v be a vertex of H — G that is partial on G. If v is universal or
null on some couple {r, s, } of a strong mirror partition of G, then v is a twin of one of
re,8; with respect to G~ {r, s, }.

Proof. Argue by induction on the number of vertices in ¢ . By the Complement

Lemma and the Isolation Lemma, we may assume that ry is isolated in Gp .
If G has precisely six vertices then r, s r;s;r;8; isa Uy There are two cases.

Case 1: v is nullon {r,,s, }.
Since v sees at least one vertex of G, by swa,ppit;g R and S if necessary, and also 7
and j, we may assume that v sees s;. Now v must see s; (if not, either v s; 7, s;1; is
a Cgorvs;rys;r;s is a Fg). This implies that v misses ri (if v sees r;, them either
ve;risiry isa Ogor {v,r,s,m,s 1 ,.s;_?-} induces L ;); by symmetry, v also misses r;.
Now observe that v is a twin with respect to r; of G — {re,s: ).

Case 2: v Is universal on {r;,s, }.
Since v misses at least one vertex of G, by swapping B and S if necessary, and also 4
and j, we may assume that v misses s;. Now v sees ri (toavoid a Cyon vrs;r;8),
misses s; (else v and the Py s, 9; ;8 conﬁradict (*) of the Stronger Lemma), and
finally sees r; (to avoid a Cg on vr, 8;r;8;). Now v is a twin with respect to s, of
G - {T't I,St }

If G has at least eight vertices then (since r, is isolated in Gp) neither G nor

@R is 2K ,, and so we can apply the Reduction Lemma. Let r;i,r; be as in the
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conclusion of the Lemma; set G; = G ~ {r;,5;}, G; = G - {r; ,8; ¥ in case (a) and G;
=G - {ri,s5;}, G5 = G - {r;,s;} in case (b). By the induction hypothesis, there is a
vertex w; in {ry,s; } such that v is a twin of w; with respect to G; - {r, ,5; + and there
is a vertex w; in {r,,s; } such that such that v is a twin of w; with respect fo G; -
{r:,s; }. We need only prove that w; = w; .

Assume the contrary: w; % w;. Now w; and wy are anti-twins in G'. However,
v is a twin of both with respect to the non-empty graph G - {r,— 18527 4,85 T8y } a

contradiction. This concludes the proof of the Zero-Two Lemma. B

The Attachment Lemma. Let H be a graph in M, let G be a strong mirror
subgraph of H, and let v be a vertex of H— G that is partial on G. Then either
(1) there is a strong mirror partition [R,S] of G such that
v is universal on R and null on S, or
(ii) n every strong mirror partition [R,S] of G there is a couple {ri.8}
such that v is a twin of one of ry s, with respect to G - {r, s, }.
Proof. We may assume that (ii) does not hold; now the Zero-Two Lemma

guarantees the existence of a strong mirror partition [R ,S] of & such that v is partial

on every couple {r,,s, }.

First we claim that
(1) if Gp has at least three components then v is partial on at most two of them.
To justify this claim, assume the contrary: Gp has components R,, R, R, (and
possibly others) such that v is partial on B, and R, Let §,, S, S; be the
corresponding components of Gg. Now there are adjacent vertices ¢ and 2z in R 1 such

that v sees z and misses a; let b denote the mate of z. Now a¢ & B, bes,, and
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a,b,v are pairwise non-adjacent. By symmetry, there are vertices ¢ and d such that ¢

€ R, d € 8, and such that ¢ ,d,v are pairwise non-adjacent.

Finally, let {z,y} be a couple with € R, y € S3. Swapping B and S if
necessary, we may assume that v sees z. Now we wish to find a vertex z in S5 that
misses 7. If By = {2} then f(Gp,z) = 0, and so we may set z — y; else let z be the
mate of any neighbour of z in B;. Now observe that.azcbzd is a C4 Since v sees z

and misses q,b,¢,d, either vzdaz is a C'; or vadazc is a F,, a contradiction.

Next we claim that
(2)  Gg has no components B, B,, B4 such that v is
partial on R, universal on R ,, and null on B ,.
To justify this claim, assume the contrary. As in the proof of (1), we find a vertex a in
Iy and b in S, such that a,b,v are pairwise non-adjacent. Now let ¢ be any vertex in
R, 'There is a vertex d in S, that misses ¢: if R, = {c } then f(Gg,c) =0, and we
may let d be the mate of ¢, else we may let d be the mate of any neighbour of ¢ in
B, Finally, let ¢ be any vertex in B, Note that v is null on S,; it follows that

vebeda is a Pg, a contradiction.

Finally, replacing # by H if necessary, we may assume that Gp is disconnected.

Let us distinguish between two cases.

Case 1: v is partial on no component of Gp .
In this case, let R 1 be the set of neighbours of v in R, and let S, be the set of non-
neighbours of v in 5. Note that [B | > 2 (else B, = {r,} and v is a twin of r, with
respect to G — {r;,s;} ). Note that B, and R - B L are homégeneous in Gy ; by the
Localization Lemma, [R, + § -~ §,,.8, + R — R,] is a strong mirror partition of G.

Since v is universal on £, + 5 — .S, and nullon S; + B - R, property (i) holds.
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Case 2: v is partial on some component of Gy, .
By (1), v is partial on precisely one component R, of (L. We shall argue by induction
on [Ry|. By (2), v is universal or null on R — R,. Note thas |[R — R,| > 2 (because
Gp is strong); hence B, and R — R, are homogeneous in Gp. SetR'=R,+ 5 -5,
S = §,+ R —~ R,. By the Localization Lemma, R ',S'] is a strong mirror partition of
G . Note that R’ induces a disconnected subgraph of @, and so does R, By(2),vis
partial on at most one component of ERI. If v is partial on precisely one such
component then we are done by the induction hypothesis applied to the mirror partition
R ',S '—} of G ; If v is partial on no such component then we are done because the mirror
partition [B ',S ’} of G satisfies the hypothesis of Case 1. This concludes the proof of the

o+

Attachment Lemma. B
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Figure 4.13




-80-

The following two lemmas are both statements of the following form: suppose that
G is a strong mirror subgraph of a graph H in M, and suppose that v is some vertex
that attaches to & in a certain way; then there is another vertex {(or there are other
vertices) in G that attach to H -+ v in another certain way. These lemmas are the last

two before the proof of Theorem 4.1

The First Extension Lemma. Let G be a strong mirror subgraph of a graph H in
M, let [R,S] be a strong mirror partition of G, let Gp be disconnected, and let v be a
vertex in H — G that is universal on B and null on 5. Then there is a verter w in H— G

that misses v, is universal on S, and null on R.

Proof. We shall argue by induction on the number of vertices in &. If & has
precisely six vertices then it is a C's and the desired conclusion follows by (2) of the Cy

Lemma.

Another case that will be treated separately is that of G = 2K, Assume that G
Is labelled as in Figure {.18. Applying the P; Lemma to s 7 40 r 35, we find a vertex w
that sees §,5, and misses r,r,v. Now w must see s, and s, (to avoid a C; on
W 81897 954 and w 84547 35 4, respectively), and w must miss ryand r, (o agvoid a Py on
W7 98:8,8,r; and W rys 8,847, respectively).

Now we may assume that G has at least eight vertices and that G £ 2KC,. Let
73,75 be as in the Reduction Lemma, and let s,; »8; be their respective mates with respect
to the partition [R ,S]. Observe that G‘RV has a component K, that includes neither r,
nor r;. Let S, be the corresponding component of Gg. Let r; be any vertex in R, If
Ry = {r,} then let 5, be the mate of 7y, else let s, be the mate of any neighbour of r,

in Gp. Note that s; is in S, and misses r,. If r;,r; are adjacent then the subgraph of
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& induced by {ri,rj,rf 187,85 ,8; } is as in Figure 4.14.1, else it is as in Figure 4.14.2.

If conclusion (a) of the Reduction Lemma holds then, by the induction hypothesis,
we find vertices w; and w; non-adjacent to v such that w; Is universal on S — s; and
null on B - r;, and w; is universal on § ~ §; and nullorn B - r;. In case r; ,7; are
non-adjacent, case (1A) of the Little Local Lemma guarantees that one of w;,w; is
universal on {s; 'S5 ,5¢ } (and therefore on S), and null on {r; Ty ,t; } (and therefore on
R). In case r; .74 are adjacent, case (2A) of the Liitle Local Lemma guarantees that w;
in universal on {s;,s;,5 } and null on {r; RIS

If conclusion (b) of the Reduction Lemma holds, then by the induction hypothesis,
we find a vertex w non-adjacent to v such that w is universal on § — 8; and null on

R - r;. But now, by the Little Local Lemma (apply cases (1B) and (2B) if r;,r; are

respectively non-adjacent and adjacent), w is universal om {s; ,87,8; } and null on

{Ti ,TJ' Ty } E
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The Second Extension Lemma. Let G be a strong mirror subgraph of a graph H
in M, let [R,S] be a strong mirror partition of G, let ry be isolated in Gy , and let v be a
vertez in H — G that is universal on R — r; and null on S— s, .
(1) If v sees both r;, and s,
then some vertex w misses v, sees both r, and 8¢, s universal on S — s, and
null on B~ r, .
(2) Ifvseesr, and misses s,
then some vertex w misses v, 1s universal on S and null on K.
(3) If v misses both r; and s,
then there are vertices w,z,y such that the subgraph induced by {r¢,s: ,v,w,z,y}
18 as shown in Figure 4.154, and such that 3
both z and y are universal on S - 5, a_nd null on B - 'r,: , and w ts universal on
B - r, and universal on S- s, .
(4) If v misses r; and sees Vs,,
then there are vertices w,z,y such that the subgraph induced by {ry,s ,v,w,3,4}
is as shown in one of Figures 4.15B, 4.15C, 4.15D and such that

both z and y are universal on S — s, and null on R — 7y, and w is universal on

B~ r, and universal on S— s, .

Proof. In all four cases, we shall argue by induction on the number of vertices in
G . If G has precisely six vertices then, in each of the four cases, the desired conclusion _
follows from the corresponding case of the C'y Lemma; see Figure 4.7. Now assume that
G hés at least eight vertices. Note that (since 7, is isolated in Gp ) neither Gr nor Gy
is 2K y; let r;,r; be as in the Reduction Lemma.

If case (a) of the Reduction Lemma applies,
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set G'=G ~{r;,5; ,R' =R -r;,,8 =8 -8 ;

set G = @ -{r;j5;},R"=R ~r;, 8" =5 -5;.
If case (b) applies,

set &' = @ ~{r;8;},R' =R -r;,, 8 =5 - 553

se6 G =G —{r;, 5}, R"=R —r;, 5" =5 3.

Proof of (1). By the induction hypothesis, there is a vertex w that misses v, sees
both r, and s;, and is universalon S’ — 5, and null on R — r;. Since w is universal on
{ri,s; }, the Zero-Two Lemma guarantees that w is either universal on S — & and null
on B —r; ornullon § -5, and universalon R - r,. To exclude the latter alternative,

we only need recall that w is universal on S — 8.

Proof of (2). By the induction hypothesis, there is a vertex w that misses v, is
universal on S and null on R'; there is also a vertex w' that misses v , is universal on
5" and null on B". By the Litile Local Lemma, one of w',w” has the properties required
of w.

Proof of (3). By the induction hypothesis, there are vertices w .2,y such that the
subgraph induced by {r,,s;,v,w,x,y } is as in Figure 4.154, and such that z and Y are
both universal on S — s; and nullon R’ - ry, and w is universal on B — r; and null on
S" —s,. Since w is universal on {ri.s; }, the Zero-Two Lqmma guarantees that w is
either universal on B - r, and null on S - s, or universal on S — §; and null on B -
T¢. To exclude the latter alternative, we only need recall thaﬁ w is universal on R - .
The same argument shows that y is.universal on & — s and nullon B — r, . Finally,

since v and s; are twins with respect to G, and since z is universal on {r; v}, the

same argument used once again shows that r is universalon S ~ s, and nullon R — ry-
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Proof of (4). Let F be the subgraph of G induced by {r, 28,V T, T,y } By the
induction hypothesis, there are vertices w,z,y such that F is as in one of Fligures
4.15B, 4.15C, 4.15D, and such that z and y are both universal on § — s; and null on
R'—r,, and w is universal on B’ — ry and null on ' — s,. There are three cases to

consider.

Case B: the subgraph F is as in Figure {.15B.
Since s, and v are twins with respect to &', and since w is universal on {r,,v }, by the
Zero-Two Lemma it follows that w is either universal on R — r; and nullon S ~ s or
nullon E — r, and universal on S — s ; to exclude the latter alternative, note that w is-
universal on B’ — r;. Since z and y are respectively null and universal on {r,,v }, the

same argument shows that both z and y are universal on S — &, and nullon B — i

Case C: I;he subgraph F' is as in Figure 4.15C.
Since 7,y ,w are each either universal or null on {r,,s; }, the Zero-Two Lemma together
with z and y being universal on S — 5; and w being universal on R’ — ry Imply that z
and y are both universalon § - 5, and null on R — r,, and w is universal on B - 7,

and nullon § - g .

Case D: the subgraph F' is as in Figure 4.15D.
Since z,w are both universal on {r,,s }, the Zero-Two Lemma together with = being
universal on S’ ~ s, and w being universal on R’ — r, imply that z is universal on § -
6 and nullon B — r;, and w is universal on R — r; and null on S — s;. Finally, note
that v and s; are twins with respect to @, and that y is universal on {r;,v}. Now the
Zero-Two Lemma together with y being universal on S — 3; implies that ¢ is universal
on § - 5 and null on B — r,. This concludes the proof of the Second Extension

Lemma. B
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We now prove the main result of this chapter, namely, that the only unbreakable

murky graphs are [, s L g, and strong mirror graphs.

Proof of Theorem 4.1. Let H be an unbreakable murky graph. If § contains

L g as an induced subgraph, then by the L 4 Lemma, H is either L gor L.

Thus we may assume that H does not contain Lg andso H isin M. Now note
that the WT Star Cutset Theorem of Chapter 3 guarantees that H contains a chordless
cycle with at least five vertices, or the complement of such a cycle. Since H is murky,
H does not contain C'g, Cp, or Ci, for k¥ > 7. Thus H contains either Cgor Cgqasan

induced subgraph; note that both s and ] g are strong mirror graphs.

Now let G' be any strong mirror subgraph of H with the greatest number of
vertices. If ¢ = H then we are done, so assume that G is a proper subgraph of H; we

will show that this leads to a contradiction.

Since H is unbreakable, there is some vertex v in  — & that is partial on &G . By
the Complement Lemma, by taking the complement if necessary, we may assume that
Gy is disconnected (note that v is partial on G if and only if v is partial on & in I?).

By the Attachment Lemma, there are two possible cases.

Case (i): there is a strong mirror partition [R,S] of G such that v is universal on R
and null on S,
In this case, by the First Extension Lemma, there is a vertex w that misses v, is null on
R, and universal on S. Let R = R + w and §"= S +v. Now we claim that the
partition {R',5"], whose couples are {w,v} and all couples of [R,5), is a strong mirror
partition. To justify this claim, we need only show that R’ and S' are strong Py-free

graphs, that (Gp:,w) = f(Gsr,v), and that for every couple {rj.s;} of [B.,S),
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[(Grrir;) = f(Gp.r;) and (Ggi ,5;) = f(Gy,5;).

Since Gy is a disconnected strong F,-free graph, it has at least two components.
Gp: is formed by adding the isolated vertex w to Gp; thus Gp, is Pyfree, and has at
least three components; thus Gy, is strong. Since w is an isolated vertex in Gy,

AGg+ ,w)=0. Similarly, Gg. is a strong Py-free graph, and f(Gsi v) = 0.

Finally, let r; be any vertex of B, and let X be the vertex set of the component of
Gp containing ry. Note that X is also t.he vertex set of the component of G,
containing r;. If |[X'| > 2, then X is a homogeneous set of both Gy and Gp., and
RGr.r;)y = f(Gx,r;) = (Gp: .73 ), by the Localization Lemma. On the other hand, if
|X| =1, then .r_,. is a singleton in both Gp and Gy, , and f(Gp i) =0= f(Gpr,r;)
Similarly, f(Gs,s;) = f(Gs: »$j) for all s; in .S. Thus the claim holds in this case, and
(R ',S '] Is a strong mirror partition, contradicting the assumption that ¢ was a largest
strong mirror subgraph of H .

Case (ii): in every strong mirror partition [R,S] of @ there is a couple {r; 8, } such
that v is a twin of one of r, s, with respect to G — {ri .8}
By the Isolation Lemma, there is a strong mirror bartition of G such that r, is a
singleton in whichever of Gp or Gp is disconnected. By the Complement Lemma, G is
also a strong mirror graph, with the same partition; v is partial on G in H if and only
if v is partial on G in H. Thus, by taking the complement of H it necessary, we may
assume that r; is Isolated in G . Now v Is a twin of either r, or & with respect G -
{r, »5y }; by swapping K and S if necessary, we may assume that v is s twin of 5.
Thus v is universal on B — r, and null on § ~ s,. Now the Second Extension Lemma

applies, and there are four subcases to consider. (See Figure 4.7.)
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Subcase (1): v sees both r, and s;, and some vertez w misses v, sees both r, and s,
and is universal on S~ s, and null on B —r, .
Let R’ =R +w and §' = § + v. It is a routine exercise to show that the partition
[R',S"], whose couples are {w s, b {ri v }, and all couples of [R ~r,,§ — 5,], is a strong

mirror partition.

Subcase (2): v sees r; and misses s;, and some verter w misses v, is universal on S,
and null on F.
Let R =R +w and §' = § -+ v. It is a routine exercise to show that the partision
R ',S'], whose couples are {w,v }, and all couples of [ ,5), is a strong mirror partition.
Subcase (3): v musses both v, and s, and there are vertices w,x,y such that the
subgraph induced by {r, 5t ,0,W,%,Y} is as shown in Figure 4.15A, and such that z and y
are both universal on S— s; and null on R — r,, and w is universal on B — ry and null on
S—s.
Let R =R + {z,y}and let ' = 5 + {v,w}. It is a routine exercise to show that
the partition [R'S'], whose couples are {re,w}, {z.5} and {y.v} and all couples of

[ - r;,8 - 5] is a strong mirror parsition.

Subcase (#A): v misses r; and sees s;, and there are vertices w,z,y such that the
subgraph induced by {r,,s, ,v,w,2,y} is as shown in Figure {.15B, Figure 4.15C, or Figure
4.15D, and such that z and y are both universal on § — s; and null on R — r,;, and w is
universal on B - r; and null on §— s, .

Let ' = R + {z,y)} and let §' = § + {vo,w}. If the subgraph induced by
{r,s;,v,w,z,y} is as shown in Figure 4.15B, then the partition [R,S'] with couples
{re.se ), {z,0}, {y,v}, and all couples of {R —r;,5 — 5] is a strong mirror partition;

If the subgraph induced by {r,,s;,v,w,z,y} is as shown in Figure 4.15C, then the
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partition [R’,5'] with couples {re,v} {y.w}, {z,s} and all couples of [R - re S — 8]
is a strong mirror partition;

if the subgraph induced by {r, ,$¢,V,w .,z .,y } is as shown in Figure 4.15D, then the
partition [R',S] with couples {re,w} {y,v}, {z.5} and all couples of [R —r,,5 — 5]

is a strong mirror partition;

Thus, in all four subcases there exists in H 3 strong mirror subgraph with more

vertices than G ; this contradiction completes the proof of Theorem 4.1. [ |
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4.4 A Characterization of Unbreakable Murky Graphs

In the previous section we showed that if a murky graph is unbreakable, then it
must be L, L4 or a strong mirror graph. In this section, we will prove the converse,
namely, that L4, Ly and strong mirror graphs are murky and unbreakable. These two

results combine to give the following characterization of unbreakable murky graphs.

Theorem 4.3. A graph is murky and unbreakable if and only «f it is either L g, L,

or a sirong marror graph.

The necessary half (i.e. the "only if” part) of the theorem is Theorem 4.1; thus to
prove Theorem 4.8, we need only prove the sufficiency half of the theorem. This half of
the theorem is proved as the following four propositions.

Proposition 1. The graphs L and L, are murky.
Proposition 2. Mirror graphs are murky.
Proposition 3. The graphs L3 and L 4 are unbreakable.

Proposition 4. Sirong mirror graphs are unbreakable.

Proof of Proposition 1. Since removing a vertex from L4 corresponds to
removing an edge from K44, it follows that every eight-vertex induced subgraph of L, is
L. Also, removing a vertex of degree four from L g leaves L,; removing a vertex of
degree three leaves L . Thus every seven-vertex subgraph of L, and L, is Lyor L, 1t
is a routine matter to verify that L, is murky; since the complement of a murky graph

is murky, L is murky. Thus both L and L, are murky. M

Proof of Proposition 2. Recall the Mirror Proposition of Section 4.2: every
induced subgraph of a mirror graph has twins or anti-twins. Since neither s, P, nor

P; have either twins or anti-twins, mirror graphs cannot have C s Ps, or Py as induced
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subgraphs; thus mirror graphs are murky. |

Recall that the neighbourhood N(v) of a vertex v in a graph G is the set of all
vertices of G — v that see v, and that the non-neighbourhood M{(v) is the set of all
vertices of G — v that miss v. A pure star cuiset of a graph G is a set § == v U
N(v), for some vertex v in G, such that & - S is disconnected. The difference
between a pure star cutset and a star cutset is that a pure star cutset consists of a
vertex together with all of its neighbours, whereas & star cutset consists of a vertex
together with any subsef of its neighbours. We will call a graph ( with at least three
vertices breakable if either G or & has a star cutset. The following claim helps to

shorten the proof of the final two propositions.

Claim (Chvdtal, private communication). Lef G be a breakable graph with at least

five vertices. Then either G or G has a pure star cutset.

Proof of Claim. Let G be a breakable graph with no pure star cutset. Chvetal
observed [1985a] that this implies the existence of vertices v,w in G, such that v sees
w, and v dominates w. Now, if v and w have any common neighbour z in G, then,
in @, w U N(w) is a pure étar cutset of G. (In G, removing w and all its neighbours
leaves a graph in which » is a singleton, and z is in some other component.) Thus we .
may assume that the only neighbour of w in G is v. Let H = G — {v.w} Now

there are two cases to consider.

Case 1: some vertex z (other than w) sees v and misses some b € H .

In this case, we are done: in &, z {J N (z) is a pure star cutset.

Case 2: every vertex z (other than z ) that sees v sees all vertices in X .
Let 5 be the set of vertices of H that see v, and let T be all other vertices of H . Note

“that the hypothesis of Case 2 implies that § is a clique, and that every vertex in S sees
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every vertex in I'. Now, if there are any two non-adjacent vertices ¢ ,b in T, then, in
G, a [ J N(a)(which includes all of §) is a pure star cutsef. Otherwise, T is a clique,
and therefore the vertices of H form a clique. But now, there is a vertex » € H such
that in &, & | N{h) is a pure star cutset: if T is non-empty, pick A any vertex in T ;
else, pick 2 any vertex in S (in each case, in G N(h) is a subset of {v,w}, and the

vertices in M(h) form a stable set; since ¢ has at least five vertices, the stable set has

at least two.) This completes the justification of the Claim. B3

Proof of Proposition 3. To prove that Lg is unbreakable, by the preceding
claim and the fact that L, is self-complementary, we need only prove that L g has no
bure star cutset: we need only prove that, for each vertex v € Ly, M (v) is connected.
An automorphism of a graph G is a permutation P of the vertices such that z and y
are adjacent if and only if P (z) and P(y) are adjacent, for all pairs of vertices z and
y¥. Note that for every pair of vertices of L g with the same degree, there is an
automorphism which maps one vertex to the other. Label the vertices of L, asr in Figure
4-8. Vertex 1 has degree 4; the subgraph induced by M(l) Is a P3 and is hence
connected. Vertex‘ 5 has degree 3; the subgraph induced by M(5)is a C',, and is hence

connected. Thus L , is unbreakable.

To preve that L g is unbreakable, by the preceding claim and the fact that Lyis
self-complementary, we need only prove that L4 has no pure star cutset: i.e. we need
only prove that, for each vertex v € Lg M(v) is connected. Note that for any two
. vertices in L g there is an automorphism which maps one vertex to the other. Thus we
need only show that, for any vertex v of Lg, M (v)is connected. Pick any vertex of L '.

- its non-neighbourhood induces a €, and is hence conmected. Thus L 4 is unbreakable.
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Proof of Proposition 4. To prove that a strong mirror graph is unbreakable, by
the preceding claim and the fact that G is a strong mirror graph (see the Complement
Lemma) we need only show that no vertex in G has a pure star cutset. By the Isolation
Lemma, there is a strong mirror partition iR ,S] such that (v isin B and) v is a

singleton in whichever of G or Gy is disconnected. Let w be the mate of v .

Case 1: Gy is disconnected.
In this case f(Gp,v) = 0, and v misses w. Thus M (v) = B — v - w: since w sees

allof B — v, M (v) is connected.

Case 2: Gy is disconnected.
In this case f(Gp,v) = 1, and v sees w. Thus M(v) = R - v. But since & is
strong, the fact that v is a singleton in C_?-R implies that @7}? has at least three

components, and so Gp., is disconnected, and therefore Gp_, is connected. This

concludes the proof of Proposition 4, and also the proof of Theorem 4.8.
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Appendix

The following result appears as Theorem £.2.1 in Olariu [1988].
Theorem (Olartu). No minimal imperfect graph contains anti-{twins.

Proof. Assume the statement false: some minimal imperfect graph & contains anti-twins

¥ and v. Let A denote the set of all neighours of # other than v, and let B denote the set of

neighbours of ¥ other than = .

Let o and w denote the number of vertices in a largest stable set and clique respectively of
G . Now
B contains a clique of size w — 1 that extends

into no clique of size win A UB. {*)

To justify {*), colour G — v by w colours and let S be the colour class that includes % .
Since & — S cannot be coloured by w — 1 colours, it contains a clique of size w; since @ — S — v
is coloured by w — 1 colours, it must be that v € . Hence ¢ —p is a clique in B of size w - 1.
If a vertex z extends ¢ — v into a clique of size w then z € B (since otherwise ¢ would extend

C into a clique of size w + 1). Thus {*} is justified.

The Perfect Graph Theorem guarantees that the comuplement of G is minimal imperfect:
thus (*) implies that
A contains a stable set of size & ~ 1 that extends

into no stable set of size o in A UE. (**)

Now let ¢ be the clique featured in (*) and let S be the stable set featured in (*%); let X
be a vertex in ' that has the smallest number of neighbours in S. By (*#*), z has a neighbour 2
Vin 5 by (*}, z is non-adjacent to some ¥ in C. Since y has at least as many neighbours in S as
Z, it must have a neighbour w in § that is non-adjacent to x. Now u,z,z,yw induce in & a

chordless ¢ycle, Thus G is not.-minimal imperfect, B
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