sprague grundy theorem

warmup g = nim(1 3) canonical form?

move options? a nim(0 3), b nim(1 2), c nim(1 1), d nim(1 0)

game canonical form
*0 = 0 { }
*1 = { *0 } = * { *0 }
*2 { *0, *1 } (exercise)
*t { *0, *1, ..., *t-1 } (exercise)

a, b, c, d canonical forms?

- d nim(1 0) { *0 } *1
- a nim(0 3) nim(3) *3
- c nim(1 1) 0 *0
- b nim(1 2) { nim(0 2), nim(1 1), nim(1 0) } = { *2, *0, *1 } = *3

simplify g? use canonical form theorem

so to find can.form of impartial game, find which options are reversible (you can forget about domination) g = nim(1 3)
= { nim(0 3), nim(1 2), nim(1 1), nim(1 0) }
= { *3, *3, *0, *1 }
g can.form? find reversible options
claim: p2 (player 2) can reverse *3 to *2, because g = *2

proof: g = *2
iff g + *2 = *2 + *2
iff g + *2 = 0

g + *2 = 0? 2 cases

p1 plays on g

g *2 -> *3 *2 -> *2 *2 = 0 p2 wins g *2 -> *0 *2 -> *0 *0 = 0 p2 wins g *2 -> *1 *2 -> *1 *1 = 0 p2 wins p1 plays on *2 g *2 -> g *1 -> *1 *1 = 0 p2 wins g *2 -> g *0 -> *0 *0 = 0 p2 wins

so g + *2 = 0, so g = *2

so canonical form of $g = nim(1,3) = *2 = is \{ *0, *1 \}$

exercise find canonical form of $g = nim(1 \ 2 \ 6)$

g move options ?

 $(0\ 2\ 6)$ $(1\ 0\ 6)$ $(1\ 1\ 6)$ $(1\ 2\ 0)$ $(1\ 2\ 1)$ $(1\ 2\ 2)$ $(1\ 2\ 3)$ $(1\ 2\ 4)$ $(1\ 2$

Lemma: let t be a normal-play impartial comb. game with set S of move options X, such that every move option is equal to some single-pile nim game, i.e. $S = {*t_j}$, where each t_j is a non-negative integer. Then t = *x, where x is the minimum excluded integer of ${t_j}$ example: assume t = {*1, *2, *6} $mex{1,2,6} = 0$, so t = *0

example: assume $t = \{*0, *1, *2, *4, *7\}$.

mex(0,1,2,4,7) = 3, so t = *3.

```
Sprague-Grundy Theorem
```

for any normal-play impartial game g,

there is a non-negative integer m s.t. g = *m

```
proof: induction (use the lemma)
assume SGT holds for all smaller games
g = { g1, g2, ..., gt }
by induction, we can assume what?
g = { *n1, *n2, ..., *nt } where n1, n2, ..., nt are integers.
by lemma, g = *x, where x is mex{n1, n2, ..., nt} QED woo hoo :)
```

Sprague-Grundy theorem for nim

example nim(1 2 6)
= { nim(0 2 6) nim(1 0 6) nim(1 1 6) nim(1 2 0) ... nim(1 2 5) }
= { *4, *7, *6, *3, *2, *1, *0, *7, *6 }
= *5