sprague grundy theorem
warmup

$$
g=\operatorname{nim}(13) \quad \text { canonical form? }
$$

move options? a nim(0 3), b nim(1 2), $c \operatorname{nim}(11), d \operatorname{nim}(10)$

game	canonical form	
$* 0=0$	$\}$	
$* 1=\{* 0\}=*$	$\{* 0\}$	
$* 2$	$\{* 0, * 1\}$	
$* \mathrm{t}$	$\{* 0, * 1, \ldots, * \mathrm{t}-1\}$	(exercise)

a, b, c, d canonical forms?

$d \operatorname{nim}(1-0)$	$\{* 0\}$	$* 1$
$a \operatorname{nim}(03)$	$\operatorname{nim}(3)$	$* 3$
$c \operatorname{nim}(11)$	0	$* 0$

b nim(1 2) \{ nim(0 2), nim(1 1), nim(1 0) \}

$$
\begin{array}{llll}
=\{\quad * 2, & * 0, & * 1 \\
= & * 3
\end{array}
$$

$$
\begin{aligned}
g & =\{\operatorname{nim}(03), \operatorname{nim}(12), \operatorname{nim}(11), \operatorname{nim}(10)\} \\
& =\{\quad * 3, \quad * 3, \quad * 0, \quad * 1
\end{aligned}
$$

simplify g? use canonical form theorem
claim: for any non-zero non-equal nimbers *x, *y, *x || *y proof: *x < *y ?

```
iff *x + *y < *y + *y
```

iff $* \mathrm{x}+* \mathrm{y}<0$ (tweedle-dee)
contradiction (Left Right indistinguishable, only impartial outcome classes are P and N)
so to find can.form of impartial game, find which options are reversible (you can forget about domination)

$$
\left.\begin{array}{rl}
g & =\operatorname{nim}(13) \\
& =\{\operatorname{nim}(03), \operatorname{nim}(12), \operatorname{nim}(11), \operatorname{nim}(10)\} \\
& =\{\quad * 3, \quad * 3, \quad * 0, \quad * 1
\end{array}\right\}
$$

g can.form? find reversible options

$$
\begin{aligned}
& \text { claim: } \mathrm{p} 2 \text { (player 2) can reverse } * 3 \text { to } * 2 \text {, because } g=* 2 \\
& \text { proof: } g=* 2 \\
& \text { iff } g+* 2=* 2+* 2 \\
& \text { iff } g+* 2=0 \\
& \\
& \quad \mathrm{~g}+* 2=0 ? \quad 2 \text { cases }
\end{aligned}
$$

p1 plays on g

$$
\begin{aligned}
& \mathrm{g} * 2 \rightarrow * 3 * 2 \rightarrow * 2 * 2=0 \mathrm{p} 2 \text { wins } \\
& \mathrm{g} * 2 \rightarrow * 0 * 2 \rightarrow * 0 * 0=0 \mathrm{p} 2 \text { wins } \\
& \mathrm{g} * 2 \rightarrow * 1 * 2 \rightarrow * 1 * 1=0 \mathrm{p} 2 \mathrm{wins}
\end{aligned}
$$

p1 plays on *2

$$
\begin{aligned}
& \mathrm{g} * 2 \rightarrow \mathrm{~g} * 1 \rightarrow * 1 * 1=0 \mathrm{p} 2 \text { wins } \\
& \mathrm{g} * 2 \rightarrow \mathrm{~g} * 0 \rightarrow * 0 * 0=0 \mathrm{p} 2 \text { wins }
\end{aligned}
$$

$$
\text { so } \mathrm{g}+* 2=0, \text { so } \mathrm{g}=* 2
$$

$$
\begin{aligned}
& \text { by can.form.thm.II, we replace option } * 3 \text { in } G \text { with } \\
& \text { set of options from *2 } \\
& \text { (also need to confirm: neither } * 0, * 1 \text { are reversible in } g \text {, } \\
& \text { this is left for you as an exercise) } \\
& \text { so } \mathrm{g}=\{\quad * 3, \quad * 0, * 1\} \\
& =\{* 0, \quad * 1, \quad * 0, * 1\} \\
& =\{* 0, \quad * 1\} \quad<- \text { can.form of } * 2 \\
& =* 2
\end{aligned}
$$

so canonical form of $\mathrm{g}=\operatorname{nim}(1,3)=* 2=$ is $\{* 0, * 1\}$
exercise find canonical form of $\quad g=\operatorname{nim}\left(\begin{array}{lll}1 & 2 & 6\end{array}\right)$
g move options ?

Lemma: let t be a normal-play impartial comb. game with set S of move options X, such that every
move option is equal to some single-pile nim game,
i.e. $S=\left\{* t_{_} j\right\}$, where each $t_{-} j$ is a non-negative integer.

Then $t=* x$, where x is the minimum excluded integer of $\left\{t_{_} j\right\}$

$$
\begin{aligned}
\text { example: } & \text { assume } t=\{* 1, * 2, * 6\} \\
& \operatorname{mex}\{1,2,6\}=0, \text { so } t=* 0
\end{aligned}
$$

example: assume $\mathrm{t}=\{* 0, * 1, * 2, * 4, * 7\}$. $\operatorname{mex}(0,1,2,4,7\}=3$, so $t=* 3$.

```
Sprague-Grundy Theorem
    for any normal-play impartial game g,
    there is a non-negative integer m s.t. g = *m
proof: induction (use the lemma)
assume SGT holds for all smaller games
g = { g1, g2, ..., gt }
by induction, we can assume what?
g = { *n1, *n2, ..., *nt } where n1, n2, ..., nt are integers.
by lemma, g = *x, where x is mex{n1, n2, ..., nt} QED woo hoo :)
```


Sprague-Grundy theorem for nim

$$
\begin{aligned}
& \text { for any t-pile nim position } g=(p 1 \mathrm{p} 2 \ldots \mathrm{pt}) \text {, } \\
& \mathrm{g}=* \mathrm{x} \text { where } \mathrm{x}=\text { nimsum(p1 p2 } \ldots \mathrm{pt})
\end{aligned}
$$

$$
\begin{aligned}
& \text { example nim(1 } 26 \text {) } \\
& =\{\operatorname{nim}(026) \operatorname{nim}(106) \operatorname{nim}(116) \operatorname{nim}(120) \ldots \operatorname{nim}(125)\} \\
& =\{* 4, * 7, * 6, * 3, * 2, * 1, * 0, * 7, * 6\} \\
& =\quad * 5
\end{aligned}
$$

