
cmput 396 mcts example revised 2018-11-20

class Node:

def __init__(self, m, p): # move is from parent to node

self.move, self.parent, self.children = m, p, []

self.wins, self.visits = 0, 0

def expand_node(self, state):

if not terminal(state):

for each non-isomorphic legal move m of state:

nc = Node(m, self) # new child node

self.children.append(nc)

def update(self, r):

self.visits += 1

if r==win: self.wins += 1

def is_leaf(self):

return len(self.children)==0

def has_parent(self):

return self.parent is not None

def mcts(state):

root_node = Node(None, None)

while time remains:

n, s = root_node, copy.deepcopy(state)

while not n.is_leaf(): # select leaf

n = tree_policy_child(n)

s.addmove(n.move)

n.expand_node(s) # expand

n = tree_policy_child(n)

while not terminal(s): # simulate

s = simulation_policy_child(s)

result = evaluate(s)

while n.has_parent(): # propagate

n.update(result)

n = n.parent

return best_move(tree)



mcts example: this hex position, white to play

a b c

1

2

3

iteration 1

• select leaf
r 0 0

• expand-leaf, pick-best-child (say b2)

r 0 0

a3

0 0

b2

0*0

b3

0 0

c1

0 0

c2

0 0

c3

0 0

• simulate from state r-b2 (say b[c1] w[c3] b[a3] ! black win)

• back-propagate
r 0 1

a3

0 0

b2

0*1

b3

0 0

c1

0 0

c2

0 0

c3

0 0

win,visit counts are for root player (white)



iteration 2

• select leaf (repeat pick-best-child)

r 0 1

a3

0 0

b2

0 1

b3

0 0

c1

0 0

c2

0 0

c3

0 0

• expand-leaf, pick-best-child (say a3)

r 0 1

a3 b2

0 1

b3 c1 c2 c3

a3

0*0

b2 b3 c1 c2

• simulate from r-c3-a3 (say black win)

• back-propagate

r 0 2

a3 b2

0 1

b3 c1 c2 c3 0 1

a3

0*1

b2 b3 c1 c2

unlabelled nodes are all 0 0



iteration 3

• select leaf (repeat pick-best-child)

r 0 2

a3 b2

0 1

b3 c1 c2 c3 0 1

a3

0 1

b2 b3

0*0

c1 c2

• expand leaf, pick-best-child (say c2)

r 0 2

a3 b2

0 1

b3 c1 c2 c3 0 1

a3

0 1

b2 b3 c1 c2a3 b2 c1 c2

0*0

c3

• simulate from r-b3-c2 (say white win)

• back-propagate

r 1 3

a3 b2

0 1

b3 1 1 c1 c2 c3 0 1

a3

0 1

b2 b3 c1 c2a3 b2 c1 c2

1*1

c3



iteration 4

• select leaf (repeat pick-best-child)

r 1 3

a3 b2

0 1

b3 1 1 c1 c2 c3 0 1

a3

0 1

b2 b3 c1 c2a3 b2 c1 c2

1*1

c3

• expand-leaf (r-b3-c2), pick-best-child (say b2)

• simulate from r-b3-c2-b2 (say black win)

• back-propagate

r 1 4

a3 b2

0 1

b3 1 2 c1 c2 c3 0 1

a3

0 1

b2 b3 c1 c2a3 b2 c1 c2

1 2

c3

a3 b2

0*1

c1 c3



How should we compute the win rate of a node with no visits?

We prefer 0 0 (wins/visits) to 0 1, because nothing could be worse than losing
all simulations. And we prefer 1 1 to 0 0, because nothing could be better than
winning all simulations.

One way to implement this is to initialize all new nodes with T wins and 2T
visits for some integer T.

Let’s repeat this example using this initialization.

iteration 1

• select leaf
r 1 2

• expand-leaf, pick-best-child (say b2)

r 1 2

a3

1 2

b2

1*2

b3

1 2

c1

1 2

c2

1 2

c3

1 2

• simulate from state r-b2 (say b[c1] w[c3] b[a3] ! black win)

• back-propagate
r 7 15

a3

1 2

b2

1*3

b3

1 2

c1

1 2

c2

1 2

c3

1 2

win,visit counts are for root player (white)



iteration 2

• select leaf (repeat pick-best-child)

r 7 15

a3

1 2

b2

1 3

b3

1 2

c1

1 2

c2

1 2

c3

1 2

• expand-leaf, pick-best-child (say a3)

r 7 15

a3 b2

1 3

b3 c1 c2 c3 1 2

a3

1*2

b2 b3 c1 c2

• simulate from r-c3-a3 (say black win)

• back-propagate

r 12 26

a3 b2

1 3

b3 c1 c2 c3 6 13

a3

1*3

b2 b3 c1 c2

unlabelled nodes are all 1 2



iteration 3

• select leaf (repeat pick-best-child)

r 12 26

a3 b2

1 3

b3

1*2

c1 c2 c3 6 13

a3

1 3

b2 b3 c1 c2

• expand leaf, pick-best-child (say c2)

r 12 26

a3 b2 1 3 b3 1 2 c1 c2 c3 6 13

a3

1 3

b2 b3 c1 c2a3 b2 c1 c2

1*2

c3

• simulate from r-b3-c2 (say white win)

• back-propagate

r 18 37

a3 b2

1 3

b3 7 13 c1 c2 c3 6 13

a3

1 3

b2 b3 c1 c2a3 b2 c1 c2

2*3

c3



iteration 4

• select leaf (repeat pick-best-child)

r 18 37

a3 b2

1 3

b3 7 13 c1 c2 c3 6 13

a3

1 3

b2 b3 c1 c2a3 b2 c1 c2

2*3

c3

• expand-leaf (r-b3-c2), pick-best-child (say b2)

• simulate from r-b3-c2-b2 (say black win)

• back-propagate

r 22 46

a3 b2

1 3

b3 11 22 c1 c2 c3 6 13

a3

1 3

b2 b3 c1 c2a3 b2 c1 c2

6 12

c3

a3 b2

1*3

c1 c3



questions to think about

• trace another iteration of this example

• how close is the current tree to finding the best move? or to finding the
correct win rate?

• how would you improve the performance of mcts if you were writing a hex
player? or a go player?


