CMPUT 396 quiz 2 50 min closedbook 9 questions, 40 marks page 1

- 1. [2 marks] For hex played on a 100x100 board (with no swap-rule), (circle one)
 - a) it is known that the 1st player can win, but no winning move is known
 - b) it is known that the 1st player wins by playing first in the centre,
 - c) it is known that if the 1st player could win, then so could the second player, which is impossible, so the 2nd player wins
 - d) it is not yet known which player wins

In this hex puzzle, assume black plays next. After black plays at b2, black has a top-bottom virtual connection using only these four other cells: ______.

In this hex puzzle, assume white plays next. Using mustplay analysis and the previous question, white can reduce the search space for a winning move from 13 cells to this set of cells: ______. On the diagram, draw a winning white move, and then draw a picture of a winning virtual connection.

4. [5 marks] This is part of the nim state transition diagram, starting from state (2 2 3): each x shows

_____, and each arrow shows

. Finish the diagram: add missing lines/arrows/ \mathbf{x} 's.

5. [4 marks] A minimax search of the empty tic-tac-toe board examines s = 340 858 nodes; s is close to 9!
= 362 880, because (circle one) a) there are 9! nodes in the state space b) each path from the initial position to a full board corresponds to a permutation of the 9 board cells c) in the search tree, after pruning transpositions, about 9! nodes remain d) in the search tree, after pruning transpositions and isomorphisms, about 9! nodes remain . Explain briefly why s < 9!:

```
6. [4 marks]
def minimax(state, depth):  *** fill in the blanks ***
if is_terminal(state):
    return eval(state)
if is_even(depth):
    return _____(for all c in state.children(): _____)
if is_odd(depth):
    return _____(for all c in state.children(): _____)
```

	a b c	For this tic-tac-toe position with x to move, the minimax value is			
7. [4 marks]	1	(circle one) x-win draw o-win.			
	2 x	A best move for x isand a best reply for o is			
	З.о.				
for your					
rough					
work					

last name			first names		
CMPUT 396	quiz 2	50 min	closedbook	9 questions, 40 marks	page 3

8. [10 marks] For this Hex position with white to move, here is a pure Monte Carlo search tree. Each node with no label shown has label 0 0.

If mcts terminates now (so, after iteration 9), then the move returned by the search will be _____

Assume that pure mcts executes one more time (so, for iteration number 10). On the above diagram, draw a path to each leaf node that might be picked in the selection phase of iteration 10.

Now assume that (in iteration 10) that node r-a3-c3 is expanded. On the above diagram, make changes so that it shows the tree after iteration 10.

[4 marks] The number of correct answers to the last part of the previous question (the tree after iteration 10) is ______.

Assume that the mcts continues after iteration 10 for a total of 1000 iterations, and that the final number of visits to node r-b3 is 23. Then the final number of wins at node r-b3 will be (circle one) exactly 1 exactly 6 exactly 17 exactly 21 about 1 about 6 about 17 about 21