
last name first names id#

CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 1

1. [3 marks] For each person or program, give the label of its description.

Aja Huang Cho Chikun David Silver Demis Hassabis

Fan Hui Geoff Hinton Lee Sedol Michael Redmond

(a) former European go champion who lost to a strong computer program in a 5-game match in

2015 (b) CEO of a leading AI research company (c) lead programmer of AlphaGo (d) former

#1 go player who lost to a strong computer program in a 5-game match in 2016 (e) 9dan

professional go player and commentator (f) neural net expert who wrote a paper on image

classification (g) first author of Nature paper on AlphaGo (h) former #1 go player who defeated

a strong computer program in a 3-game match in 2016 .

2. [4 marks] Fill in the blanks, and circle correct answers.

AlphaGo integrates neural net calls into search , overcoming the slowness

of net calls by (circle all that apply) a) building shallow nets that reply quicker than the initial

deeper versions b) handling net calls with GPUs c) having the master algorithm continue to

operate while net calls are executing d) having each net call distributed over parallel processes .

AlphaGo child-selection uses (circle all that apply) a) a deep policy net b) a deep value net

c) a shallow policy net d) a shallow value net e) simulations .

In AlphaGo, once a leaf is reached, using a (circle all that apply) cpu / gpu , a call is made

on a (circle all that apply) a) deep policy net b) deep value net c) shallow policy net d)

shallow value net e) simulation net .

Also, at the leaf, a simulation is performed on a (circle all that apply) gpu / cpu . Then, using

a fractional weighting of for the call and (these 2 fractions sum to 1.0) for the

simulation, the leaf score is backed up the search tree.

last name first names id#

CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 2

3. [4 marks] This is a minimax tree. The root player is max. Each leaf label is the root player’s score

for that leaf. i) On the diagram, beside each non-leaf node, write the root player’s minimax value

for that node. ii) Assume that minimax values are found by (recursive) alphabeta search, with

children of a node considered starting from the left. For this search, on the diagram, draw 2 short

lines through each edge that is pruned, and draw a box around each leaf node that is examined.

A
10

B
9

C
11

D
8

E
7

F
5

G
6

H
4

I
12

J
3

K
2

L
13

4. [3 marks]

a b c

1 . . .

2 . . x

3 o . .

For this tic-tac-toe position with x to move, the minimax value is

(circle one) x-win draw o-win . A best move for x is

and a best reply for o is . A simple minimax search would

consider about this many states: (circle one) 3 30 300 3000

30000 300000 7! = 5040 8! = 40320 9! = 362880 .

for .

rough .

work .

last name first names id#

CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 3

5. [4 marks] In MCTS, for a child with w wins and v visits, the function f(w, v) = (w+ t)/(v+2t) is

used to measure win rate instead of g(w, v) = w/v because (circle all that apply) a) f allows

the true value to be estimated more quickly b) f returns a value when v is 0, so never divides by

0 c) f increases the statisical significance of the simulations d) f allows quicker recovery from

initial unlucky simulations .

The MCTS UCB1 formula balances the exploitation of a search with

the of children which have received fewer than

their siblings. For each child j, the formula is (circle one) a) f(wj, vj) + c
√

ln(v1 + . . . vt)/vj

b) f(w, v)+c
√

(v1 + . . . vt)/vj c) f(wj, vj)+c
√

vj/(v1 + . . . vt) d) f(w, v)+c
√

vj/ ln(v1 + . . . vt).

MCTS can be improved by adding patterns to simulations: eg. in Go, after each simulation move,

if a move creates a match with a local (ie. around that move) pattern, then (circle one) a) a

random move is performed b) the reply move for that pattern is played c) the appropriate player

is designated the winner d) the leaf node has its RAVE count increased by 1 .

Eg. in Go, if a white simulation move is as shown in this local 2×2 pattern

sequence, then what happens next is

.

6. [3 marks] Before 2000, the strongest Go program was as strong as a human with rank (circle one)

a) 5 dan b) 9 dan c) 15 kyu d) 30 kyu . MCTS was first used in Go programs around the

year . Later Clark and Storkey used records from professional

games to build a deep neural net that predicts the most popular move correctly

with probability about . Eg. their net predicts that the first move on the empty

x board will be at the (circle one) a) 4 4 point b) 5 5 point c) 6 6 point d) 7 7

point. Later the company (owned by Google) wrote AlphaGo, which

is about as strong a human with rank (circle one) a) 5 dan b) 9 dan c) 15 kyu d) 30 kyu .

last name first names id#

CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 4

7. [4 marks] The Tromp-Taylor rules use superko: a move cannot recreate

any previous position. Eg. assume from this 1×5 Go state black moves to cell 5,

resulting in : now white cannot move to cell because of superko.

From this state 1 2 3 with white to play the minimax value for white is with

principal variation (circle one) a) w5 pass pass b) w5 pass w2 pass pass c) w5 pass w2 b4

pass b1 w2 pass pass d) w5 pass w2 b4 pass b1 w2 pass w3 pass pass .

For each n in the table, give the first-player

minimax value for 1×n Go.

n 1 2 3 4 5 6

value

8. [3 marks] For a position in a 2-player game with players x,o and player-to-move x, here is a mcts

tree at some point in execution. Node labels show the associated move. Now a simulation

occurs at the leaf node whose path from the root is -c-e-b, playout -f-d-a, result x win. For this

extended playout, the moves made by x were and by o were .

In the table below, give the change (leave it blank if no change) to each node’s wins, visits,

rave-wins, rave-visits that happens during backup. Column a will be all blank.

a b c d e f

ca cb cd ce cf

cea ceb ced cef

a b c d e f ca cb cd ce cf cea ceb ced cef

w

v

ravew

ravev

last name first names id#

CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 5

9.

[3 marks] For this Hex position, after black plays at b4, black has a winning virtual

connection using cells {a5,b5} and {a1,a2,a3,b1,b2,c1,c2,d1}. Similarly, after black

plays at c2, black has a winning virtual connection using cells {c1,d1} and {a4,a5,b4}

and {e2,d3} and {e4,d5,e5}. So, for this position with white to play, white must

play at one of the cells in { }, otherwise black can

win. For this position with white to play, the set of all winning white moves is

{ }. So far, the largest Hex boardsize on which

winning opening moves have been found is .

a b c d e

1

2

3

4

5

10. [2 marks] For the nim state with piles 10 9 8 5, list all winning moves below (if there is no winning

move, leave the blank empty). On the side, show your work.

From the 10 pile, remove stones.

From the 9 pile, remove stones.

From the 8 pile, remove stones.

From the 5 pile, remove stones.

11. [2 marks]

5 2 3

1 8 4

7 6 _

The number of inversions of this sliding tile puzzle is (an

number) and the number of columns is an odd number, so

this puzzle (circle one) is / is not solvable.

Consider Python implementations of these algorithms that solve 5x5 (and smaller) sliding tile

puzzles: the A* algorithm described in class, and a special-purpose (SP) algorithm using the

method from the youtube video discussed in class. (circle all that apply)

a) A* with the Manhattan heuristic is usually faster than A* with the misplaced tiles heuristic.

b) A* with the Manhattan heuristic is usually faster than SP, because it finds a shortest path

through the state space.

c) A* with the Manhattan heuristic is usually slower than SP, because SP does not search the

whole state space.

d) The runtime for SP on 5x5 puzzles is about 1.25 time the runtime for SP on 4x4 puzzles.

last name first names id#

CMPUT 396 3 hr closedbook 6 pages, 7 marks/page page 6

12. [1 marks] Recall: in Go a group of stones is unconditionally safe if the opponent cannot kill the

group, even if the player always passes. The simplest kind of unconditionally safe group is one

that has at least .

13. [6 marks] Consider these games: hex on an 6×6 board, go on a 1×18 board, and tic-tac-toe on an

6×6 board (where to win, you need 4 in a row). For each game you want to write a computer

solver (so, an agent that finds a move with best minimax score).

For 6x6 hex, (circle all that apply)

a) the game can be solved in a reasonable amount of time using only alphabeta search, since the

game tree has only 36! ≈ 4× 1041 nodes

b) implementing a transposition table is not difficult, especially since there are no draws

c) the game can be solved in a reasonable amount of time using only alphabeta search, a transpo-

sition table, and symmetry pruning, since the solving dag then has about 1030 states

d) the game can be solved in a reasonable amount of time using alphabeta search, a transposition

table, and pruning with symmetry, mustplay, and inferior cells, since the solving dag then has

about 1015 states

For 1x18 go, (circle all that apply)

a) the game can be solved in a reasonable amount of time using only alphabeta search since the

game tree has only 18! ≈ 6× 1015 nodes

b) implementing a transposition table is not difficult, since the winner scores at most 18 points

c) the game can be solved in a reasonable amount of time using only alphabeta search and a

transposition table since the solving dag then has about 1012 states

d) the solver can be improved by recognizing commonly occuring unconditionallly safe groups .

For 6x6 tic-tac-toe, (circle all that apply)

a) the game can be solved in a reasonable amount of time using only alphabeta search since the

game tree has only 36! nodes

b) implementing a transposition table is not difficult, as there are only 3 possible outcome values,

c) the game can be solved in a reasonable amount of time using only alphabeta search and a

transposition table, since the game is likely to end in a draw,

d) the solver can be improved using mustplay pruning (ie. play here or lose) .

