1. def makemove(p, cell, position, h): \# assume cell empty putstone(p, cell, position) \# cell in position gets color p
if in_history(position, h): \# line A
if $0==$ liberties(cell, position): \# line B
removecaptured(opponent(p), cell, position) \# line C
return(ILLEGAL) \# suicide \# line D
return(ILLEGAL) \# superko \# line E
h.append(position) \# add new position to move history

Function makemove() makes a legal Go move, but lines A-E are out of order. Give the correct order of execution of these five lines:
2. def score(self): \# FILL IN THE MISSING LINES OF THIS PYTHON FUNCTION $\mathrm{b}, \mathrm{w}=0,0$ \# points for black, white seen $=[$ False $] *$ Cell.n $\#$ all cells start unseen for c in range(Cell.n): \# for each cell on the board
if self.brd[c] == Cell.b: b += 1 \# c is black
elif self.brd[c] == Cell.w: w += 1 \# c is white
elif not seen [c]: \# c is empty and not yet seen
reach_b, reach_w, cells = False, False, 0
seen $[\mathrm{c}]=$ True $; \mathrm{L}=[\mathrm{c}]$
while len(L) >0 : \# traverse from c
$\mathrm{t}=\mathrm{L} \cdot \mathrm{pop}(\mathrm{)}$; cells += 1
for u in Neighbours[t]: \# for each cell u adjacent to cell t
if self.brd[u] == Cell.b:
\qquad
elif self.brd[u] == Cell.w:
\qquad
elif not seen $[u]$: seen $[u]=$ True ;
\qquad
if reach_b and not reach_w:

elif reach_w and not reach_b:
return b-w \# Tromp-Taylor score of input Go position

first name	last name	id\#	
2018 CMPUT 396	final exam	3 hr	closed book

3. Solve this sliding tile puzzle. After each move, show the position (you might not need each blank position). The first move has been done for you.

When solving this starting position with breadth-first search, the number of positions encountered is around $\begin{array}{llllllllllllll}\text { (circle one) } 10 & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 700 & 1400 & 3000 & 6000 & 12000\end{array}$

For sliding tile puzzles, what algorithm(s) always find(s) a shortest solution? (circle ALL that apply)
a) breadth-first search
b) A*-search with Manhattan distance heuristic
c) depth-first search
d) A^{*}-search with number-misplaced-tiles heuristic
4. a b c

3 . . .
2 . . x
1 ○..
$3 \times 0 \circ$
$2 \mathrm{x} \circ \circ$
1 xx .

For this tic-tac-toe position, a best move for x is \qquad and the minimax result for x is (circle one) win lose draw

For this Go position with move history 1.B[b1] 2.W[b2] 3.B[a2] 4.W[c3] 5.B[a3] 6.W[c2] 7.B[a1] 8.W[b3] and Tromp-Taylor no-suicide positional superko rules, a best move for Black (x) is \qquad and Black's minimax score is \qquad . Explain briefly below.
\qquad
\qquad
\qquad
5. Label each node with its minimax (not negamax) value. The leafs are done for you. Root is a max node.

6.

In this Hex position, what is White's mustplay region? (Hint: if Black plays E2 then E2-top, E2-F3 and F3-bottom are virtually connected using E1, F1, F2, E3, E4, F4, E5, F5, C6, D6, E6, F6; if Black plays C4 then C4-top, C4-D5 and D5-bottom are virtually connected using C1, D1, E1, F1, C2, D2, E2, D3, D4, C5, C6, D6.) (below, circle all)

C1 D1 E1 F1 C2 D2 E2 F2 D3 E3 C4 D4 E4 F4 C5 E5 F5 C6 D6 E6 F6

For this position with White to play, give all winning moves: \qquad

Which features strengthen computer Hex players? (circle ALL that apply)
a) filling captured cells
b) subtracting the komi
c) filling dead cells
d) modeling the board as a resistance network
e) computing virtual connections and mustplay
f) in Monte Carlo simulations, replying when an opponent threatens a 2-cell virtual connection
7. Nim $(2,2,2)$ starts with 3 piles, each with 2 stones. Below are nodes from the nim($2,2,2$) state space dag (directed acyclic graph) grouped into isomorphism classes (e.g. (2,1,1), (1,2,1), (1,1,2) are in the class (2,1,1)). On the diagram, add an arrow to show each possible move (the arrow from $(0,0,1)$ to $(0,0,0)$ is already there) and put x under each losing node (the x under $(0,0,0)$ is already there).

Now assume that we represent the nim $(2,2,2)$ state space with a tree instead of a dag and that nodes are not grouped by isomorphism (so $(2,1,1),(1,2,1)$ and $(1,1,2)$ are different nodes). In the tree, how many children does root $(2,2,2)$ have? \qquad
Roughly, how many nodes are in the tree? \qquad show your work
8. Give all winning first moves from nim $(26,23,12,5)$. You might not need each line. show your work Move \qquad stones from the pile with \qquad .

Move \qquad stones from the pile with \qquad
Move \qquad stones from the pile with \qquad .

Move \qquad stones from the pile with \qquad .

Move \qquad stones from the pile with \qquad .
9. 0 while time remains:

6
7

12 until node == root

In the pseudocode above, the leaf selection phase is lines \qquad -.
10. Consider the MCTS tree above. Unlabelled nodes have wins,visits 0,0 . Assume that winrate(wins, visits) is defined as (wins +1)/(visits +3), e.g. winrate $(0,0)$ is $1 / 3$ and winrate $(1,1)$ is $2 / 4$. In the next MCTS iteration, the path to a leaf could be (circle one) r-a3 r-b2 r-b3-a3 r-b3-c2-a3 r-b3-c2-b2 r-c3-a3 r-c3-b2.

Assume instead that the path to the leaf was r-c3-c2 and that from a child of this leaf a simulation resulted in a win. Then after this iteration the labels on these $\mathrm{c} 2, \mathrm{c} 3, \mathrm{r}$ will be respectively \qquad

In exploitation/exploration MCTS, the winrate function is modified by adding a term that rewards (circle one) a) high wins \quad b) low wins \quad c) high visits \quad d) low visits \quad e) high wins/visits \quad f) low wins/visits .

The original AlphaGo modified MCTS by (circle one)
a) combining simulations with policy net calls b) combining simulations with value net calls c) replacing simulations with policy net calls d) replacing simulations with value net calls .

11. In game 4 of the AlphaGo match, Lee Sedol's move 78 was a surprise. (circle ALL that apply)
a) most strong humans would not play this move b) AG's value net gave this move a low score c) AG's policy net gave this move a low probability d) AG's search gave this move a low probability .

After the game, Lee Sedol said that (circle ALL that apply)
a) the move felt right b) he saw that this move was winning c) from the previous moves, he felt that AG was in trouble d) based on game 2, he thought that AG would not expect this move .

Because AG did not expect this move (circle ALL that apply)
a) it turned on its database access code b) it spent more than 10 minutes on the next move c) it had to build a new search tree almost from nothing d) it did not have time to build a large search tree on its move .
12. Recall that Tromp's alpha-beta program solves 2 x 2 Go (positional superko): when moves are ordered so that pass is checked last, the search tree has about 20000000 nodes and max depth 58.

In a smallest proof tree showing that the 2 x 2 Go 1st-player minimax score is ≥ 1, each node where the 1st-player moves next must show (circle one) all one of the children and each node where the 2nd-player moves next must show (circle one) all one of the children. This tree has only _ nodes and max depth _ . show your work

