set cover

```
* instance universe U = \{1, 2, ..., n\}
           set S of m subsets of U
 query are there k sets in S that cover U?
                                        (why?)
* also called min set cover problem
* NP-complete
                                        (why?)
       set universe
           0 1 2 3 4 5 6 7 8 9
           --*--**-
       0
           - * - - - - * - *
       1
       2
            - - - - * - - * * -
       3
            . - - - - * - * * -
       5
       6 * * - * - - -
 is this a cover?
           * * - * - - -
 is this a min cover?
```

```
********
greedy set cover alg'm
********
C <- { }
loop
   Z \leftarrow all nodes not covered by C
   if Z empty:
      exit loop
   for each c in S\C:
      c_z <- size of intersection c,Z</pre>
   add any c with max c_z to C
return C
********
previous example:
        5 ---*-*-*
        6 * * - - -
        0 --*--**-
```

4 - - - - * - * * -

Theorem. n-node GSC has size <= opt * (ln n)

Proof. n_t: number uncovered nodes after t it'ns

 $* n_0 = n$

- $* n_1 \le n_0 n_0/opt = n_0 (1 1/opt)$ why?
- * opt-cover: some set that hits n/opt nodes
- $* n_{t+1} \le n_t n_t/opt = n_t (1 1/opt) why?$
- * opt-cover: some set that hits n_t/opt nodes

(if greedy cover-so-far has t sets from opt-cover,

then some remaining set hits n_t/(opt - t) nodes)

- * n_t <= n_0 (1 1/opt)^t < n_0 (e^{-1/opt)^t = ne^{-t/opt}
- * when $t = opt ln n, n_t < n e^{-ln n} = 1 Q.E.D.$

worst-case lower bound

																	n	2
					. >	k										min	cover	2
				;	k .	•										greedy	cover	2
				;	k >	k												
		•	,	• k	•	•												
		>		•	•	•											n	4
		-		• k	•	• •										mir	cover	
						Γ												
		>	K ,	• >	K ,	•										greeay	cover	3
•	•	•	•		*	*	*											
•	•	*	*	•	•	•	•											
•	*	•	•	•	•	•	•											
*	•	•	•	•	•	•	•										n	8
•	*	•	*	•	*	•	*									mir	cover	2
*	•	*	•	*	•	*	•									greedy	cover	4
								a la	s la	s la	al a	ala.	s la	s la	al a			
•	•	•	•	•	•	•	•	*	*	*	*	*	*	*	*			
•	•	•	•	*	*	*	*	•	•	•	•	•	•	•	•			
•	•	*	*	•	•	•	•	•	•	•	•	•	•	•	•			
•	*	•	•	•	•	•	•	•	•	•	•	•	•	•	•			
*	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		n	16
•	*	•	*	•	*	•	*	•	*	•	*	•	*	•	*	min	cover	2
*	•	*	•	*	•	*	•	*	•	*	•	*	•	*	•	greedy	cover	5

Claim: for all $t \geq 1$, for $n=2^t$, there is a set cover instance with min cover size 2 greedy cover size t+1.

Corollary: for all $t\geq 1$, for $n=2^t,$ there is a set cover instance with (greedy cover size) / (min cover size) in $\Omega(\lg n).$

Corollary: for all n, worst case greedy set cover / optimal set cover is in $\Theta(\lg n)$