
cmput 304 2024 study questions 2 show your work

1. L = createEdgeList(G) # (3)

P = {} # (4)

for v in G: P[v] = v # (2)

while len(L) > 0: # (9)

t = extractmin(L) # (7)

a, b = t[0], t[1] # (0)

ra, rb = UF.myfind(a,P), UF.myfind(b,P) # (6)

if ra != rb: # (1)

print(a,b,t[2]) # (5)

UF.myunion(ra,rb,P) # (8)

2. When we create the edge list L, we construct L from G which has n vertices.

We have a for loop that iterates through all vertices v ∈ G which takes O(n)

time. Then we iterate through the edges of v, and there could be n − 1 of

these, so we are now taking at least O(n2) time. The rest of the steps take

constant time, so creating L takes O(n2) time.

Next we begin a while loop that iterates through L, L has O(n2) edges so this

now takes at least O(n2) time. Then calling extractmin does another iteration

through L, so it takes O(n2) time here. In total, we now have an algorithm

that takes O(n4) time. It is simple to verify then that the rest of the steps

in this while loop are dominated in time complexity from extractmin, and

so the loop takes O(n4) time. In the case that the number n is too large to

fit into one memory location, we have to multiply our runtime by the time

necessary to perform any basic operation (addition, subtraction, assignment)

by k where k is the size (number of memory locations) needed to store n, so

by Θ(lg n), so the total runtime is in O(n4 lg n).

3. a) fib(n = 0) and fib(n = 1) both get inside the if condition and instantly

return n and terminate, therefore T (0) = T (1) = 1.



b) For any n ≥ 2, fib(n) doesn’t get inside the if condition and instead call

return fib(n-1) + fib(n-2). In other words, it makes a total of: one call

to fib() on the top layer, plus T (n − 1) calls as a result of fib(n-1), plus

T (n− 2) as a result of fib(n-2). Hence, T (n) = 1 + T (n− 1) + T (n− 2).

c) Primer: f(0) = 0, f(1) = 1, f(2) = 1, f(3) = 2, f(4) = 3, f(5) = 5.

Proof by strong induction on n:

Base case:

We know T (0) = T (1) = 1. This means T (0) = 2f(1) − 1 and T (1) =

2f(2) − 1. It also means, T (2) = 1 + T (1) + T (0) = 3 = 2f(3) − 1, so

T (n) = 2f(n+ 1)− 1 for n = 2.

Inductive step:

Assume the property T (n) = 2f(n + 1) − 1 holds for n = [2, k] with k ≥ 2,

we want to show that it also holds for n = k + 1.

T (k + 1) = 1 + T (k) + T (k − 1) by property from (a)

= 1 + 2f(k + 1)− 1 + 2f(k)− 1 by the inductive assumption

= 2 [f(k + 1) + f(k)]− 1

= 2f(k + 2)− 1 by the Fibonacci property

The proof by induction is complete. T (n) = 2f(n+ 1)− 1.

d) The Fibonacci sequence can be approximated as:

f(n) =
1√
5
(gn − (1− g)n)

Let n0 be a large enough number such that for n ≥ n0, (1− g)n ≈ 0. So,

f(n) ≈ 1√
5
gn (for n > n0)

So, for n ≥ n0, we have

T (n) = 2f(n+ 1)− 1 ≈ 2

(

1√
5
gn+1

)

− 1 ≈ 2√
5
gn+1

Let c = 2√
5
g. Then cgn = 2√

5
gn+1, and both of these are satisfied for all

n ≥ n0: cg
n ≥ T (n) ≥ 0 and 0 ≤ cgn ≤ T (n).



So T (n) ∈ O(gn) and T (n) ∈ Ω(gn). Therefore, T (n) ∈ Θ(gn).

4. Let ν(j), µ(j) be the value of a and b respectively after line 4 has executed

exactly j times. We have ν(j + 1) = µ(j) (for j ≥ 0) because a is assigned

to be b of the previous iteration. Denote that property (1). We also have

µ(j) = ν(j−1)+µ(j−1) (for j ≥ 1) because b is assigned to be the sum of a

and b from the previous iteration. By (1), this implies µ(j) = ν(j−1)+ν(j−2)

(for j ≥ 2). Denote that property (2).

We want to show that ν(j) = f(j). Proof by strong induction on j:

Base case:

With j = 0, line 4 is never executed, which means a = 0 as initialized, so

ν(0) = 0 = f(0). With j = 1, line 4 is executed once, which means a = 1, so

ν(1) = 1 = f(1).

Inductive case:

Assume the property ν(j) = f(j) holds for j = [2, k] with k ≥ 2, we want to

show that it also holds for j = k + 1.

ν(j + 1) = µ(j) by (1)

= ν(j) + ν(j − 1) by (2)

= f(j) + f(j − 1) by the inductive assumption

= f(j + 1) by the Fibonacci property

The proof by induction is complete. ν(j) = f(j).

5. a) The naive algorithm works: iterate through n, add the pair of binary bits,

generate carry overs and incorporate them in the next bit. This algorithm

reads each of the 2n bits. We want to prove that we cannot do better—we

cannot add two n-bit numbers while reading just 2n− 1 or fewer bits.

Suppose for contradiction: an algorithm ALG can add two numbers (a and

b of n-sized bits) without reading one of the bits. Let n = 1, then ALG

don’t read one of a and b. WLOG, suppose ALG don’t read b, which means

ALG don’t know if b = 0 or b = 1 when outputting. We can treat this as



a game between ALG and an adversary ADV , where ADV reveals a, then

ALG reveals its output, only then does ADV reveals b. Let ADV first reveals

a = 0, then let ALG reveals its output, then ADV reveals b to be the opposite

of ALG’s output, rendering ALG wrong. This is in contradiction with the

assumption that ALG can add two numbers without reading one bit. The

proof is complete.

b) Any algorithm to add two numbers must read each of the 2n bits. Let f(n)

be the runtime of the most optimal algorithm: f(n) ≥ 2n. Let c = 1 and

n0 = 1, then we have f(n) ≥ 2n ≥ cn ≥ 0 for all n > n0. So f(n) ∈ Ω(n).

6. a) Prim’s Trace:

⇒ Set of edges: (ab, be, ej, ad, dh, bf, bc, cg, gk)

b) Prim’s Trace:

⇒ Set of edges: (gk, cg, bc, be, ej, ab, ad, dh, bf)



c) Prim’s Trace:

⇒ Set of edges: (ad, dh, hj, eg, be, bf, bc, cg, gk)

d) Prim’s Trace:

⇒ Set of edges: (gk, cg, bc, be, ej, hj, dh, ad, bf)

e) Kruskal’s Trace:

dh 1

cg 2

be 3

ej 3

ab 4

ad 4

reject he

reject hj



reject de

reject ae

bf 6

gk 7

bc 8

reject ef

reject cf

reject fj

reject fg

reject fk

reject jk

⇒ Set of edges: (dh, cg, be, ej, ab, ad, bf, gk, bc)

7. d) We want to show that K is a MST. If K = M where M is a MST, well

then we have shown what we want.

k) M1 was constructed so that M1 = M + ek − ej. ej was chosen from

the cycle C, which is the cycle of M + ek. Removing an edge from a cycle of

M + ek guarantees that M + ek − ej is still spanning.

l) Removing an edge from a cycle of M + ek doesn’t change the connect-

edness of M1, since it was an edge from a cycle. A tree is simply just a

connected, non-cyclic graph, so we have a MST.

m) If it were less, thenM would not be a minimum spanning tree to start with.

n) This is a tautology, but never the less it is an important step in the proof

for logical deduction in step (o).

o) From m and n it follows by definition that M1 is a MST.



p) From steps f) and on, we can repeat the argument until the step (f) can

not be done anymore (since we have but finitely many edges), and therefore

we conclude at the end that M1 = K, is a spanning tree.

8. Assuming we choose ek by smallest weight first, we would choose edge FG

first. Then the cycle FGEBD is the cycle C in the proof. We want to find

ej such that ej ∈ C \K. There is but one possibility for this ej being edge

BD.

9. (0, A):

0 does not prefer A to D

A prefers 0 to 1

⇒ not unhappy

(0, B):

0 prefers B to D

B does not prefer 0 to 3

⇒ not unhappy

(0, C):

0 prefers C to D

C does not prefer 0 to 2

⇒ not unhappy

(1, B):

1 does not prefer B to A

B does not prefer 1 to 3

⇒ not unhappy

(1, C):

1 does not prefer C to A

C does not prefer 1 to 2

⇒ not unhappy

(1, D):

1 does not prefer D to A



D does not prefer 1 to 0

⇒ not unhappy

(2, A):

2 prefers A to C

A prefers 2 to 1

⇒ unhappy

(2, B):

2 prefers B to C

B prefers 2 to 3

⇒ unhappy

(2, D):

2 does not prefer D to C

D prefers 2 to 0

⇒ not unhappy

(3, A):

3 prefers A to B

A prefers 3 to 1

⇒ unhappy

(3, C):

3 prefers C to B

C does not prefer 3 to 2

⇒ not unhappy

(3, D):

3 prefers D to B

D does not prefer 3 to 0

⇒ not unhappy

10. Bipartite preference system and matching with (0, B) and (1, A):

Check for the following (0, A) and (1, B):

(0, A):



0 prefers A to B

A does not prefer 0 to 1

⇒ not unhappy

(1, B):

1 prefers B to A

B does not prefers 1 to 0

⇒ not unhappy

Since there is no unhappy couple, it is stable.

Bipartite preference system and matching with (0, A) and (1, B):

Check for the following (0, B) and (1, A):

(0, B):

0 does not prefer B to A

B prefers 0 to 1

⇒ not unhappy

(1, A):

1 does not prefer A to B

A prefers 1 to 0

⇒ not unhappy

Since there is no unhappy couple, it is stable.

11. a) u = 1, v = 0, w = 0, x = 1 because there are no unhappy matches.

Therefore, it is stable

b) Following possible assignments of u, v, w, x can give valid and unstable

matching:

⇒ u = 0, v = 1, w = 0, x = 1 because (0, A) is unhappy.

⇒ u = 0, v = 1, w = 1, x = 0 because (0, A) is unhappy.

⇒ u = 1, v = 0, w = 1, x = 0 because (1, B) is unhappy.

12. a) The new proposals made: First 0 would propose to C (even though they

are already connected). Now the dotted line means that 1 can not propose to



A, so 1 instead proposes to D, (again they are connected). Then 2 proposes

to A, and 3 proposes to A as well (since 3 can no longer propose to D). Now,

A has two incoming proposals, and says maybe to 3 and no to 2 (again by the

listing of preferences). B has no incoming proposals. C has only one incoming

proposal, and so says maybe to 0. D has only one incoming proposal, and so

says maybe to 1.


