
cmput 304 2024 study questions 1 show your work

recall: 210 = 1024 lg e = 1.4... lg 10 = 3.3...

1. (a) Explain why any steiner tree for this puzzle must include at least 4 horizontal edges.

(b) Repeat (a) for vertical edges.

(c) Explain why a min cost solution to this puzzle must include at least 8 edges.

(d) Find a min cost solution to this puzzle.

Answer:

(a) The steiner tree for the given puzzle joins the nodes A2, B5, E1 and E3. These nodes

span across columns A to E. To connect the nodes in these columns, the tree needs to pass

through columns in between. Thus, the solution requires a horizontal path that connects

column A to column E, moving across columns B, C, and D. Therefore, any steiner tree for

this puzzle must include at least 4 horizontal edges.

(b) Refer part (a), tree needs to vertically pass through all the rows from 1 to 5

(c) As determined in parts (a) and (b), any steiner tree for the given puzzle includes at least

4 horizontal edges to span the columns and 4 vertical edges to span the rows. Therefore, the

minimum cost solution will have at least 8 edges.

(d) Min cost: 8

• Connect point at (A, 3) to (E, 3) horizontally

• Connect point at (B, 3) to (B, 5) vertically

• Connect point at (E, 1) to (E, 3) vertically



2. A number q satisfies ln q = 529. Give an arithmetic expression for lg q and estimate it roughly.

(You do not have to calculate it). Repeat for log10 q?

Answer:

We have ln q = 529. Using properties of logarithms we have

529 = ln q =
log2 q

log2 e
,

and so log2 q = 529 log2 e. A simple estimation is given by 2 ≤ e ≤ 22 and so we can estimate

529 ≤ log2 q ≤ 1058.

Sharper estimates can be obtained with sharper bounds on e. Now if ln q = 529 then we can

write

529 = ln q =
log10 q

log10 e
,

and so log10 q = 529 log10 e. Again another simple estimation yields 101/3 ≤ e ≤ 101/2 and so

we may write

176.333 ≤ 529

3
≤ log10 q ≤

529

2
= 264.5.

The approximate value of log2 q is 763.18 and the approximate value of log10 q is 229.74.

3. Let x = 1, 000, 000. Give an arithmetic expression for lg x and estimate it roughly. (You do

not have to calculate it). Repeat for ln x and log10 x.

Answer:

If log2 x = a, then x = 2a. Note that 220 = 1048576 ≈ 106, so applying logs, we obtain

log2 x ≈ 20. The approach is similar for ln x by writing e ≈ 3. For log10 x, we note that x is

already a power of 10, so then log10 x = 6.



4. Recall http://webdocs.cs.ualberta.ca/~hayward/272/jem/collatz.html.

Prove or disprove (if you can):

a) for all positive integers n, the last number printed by collatz(n) is 1.

b) for all n in {1,2,. . . ,10}, the last number printed by collatz(n) is 1.

c) if the collatz conjecture fails for some integer, and if n0 is the smallest such integer, then

n0 is odd.

Answer:

(a) This is an open problem! You will be famous if you solve it.

(b) This is a simple verification of the algorithm at hand. One has the sequences:

1

2 → 1

3 → 10 → 5 → 16 → 8 → 4 → 2 → 1

4 → 2 → 1

5 → 16 → 8 → 4 → 2 → 1

6 → 3 → 10 → 5 → 16 → 8 → 4 → 2 → 1

7 → 22 → 11 → 34 → 17 → 52 → 26 → 13 → 40 → 20

→ 10 → 5 → 16 → 8 → 4 → 2 → 1

8 → 4 → 2 → 1

9 → 28 → 14 → 7 → . . . (follow from 7)

10 → 5 → 16 → 8 → 4 → 2 → 1.

Hence statement b is correct.

(c) If the Collatz conjecture fails, then this algorithm will not halt. Hence, if n0 is the smallest

such number in an infinite sequence of outputs where the conjecture fails it must be odd, for

if it was even, then the next element in the sequence would be n0/2 < n0, a contradiction to

the minimality of n0.



5. Partition these functions into same-theta equivalence classes, in increasing order (so if limn→∞ f(n)/g(n) =

0 then put f(n) before g(n). Also, for each class, give the simplest function in that class. For

example, the simplest function in the class Θ(3.5n2 + 6 lg n) is f(n) = n2.

a(n) = 2n b(n) = 3n c(n) = 1.52n d(n) = n2 + lg n e(n) = n3 + (lg n)4

f(n) = lnn+ 2 lg n+ 16 log10 n g(n) = n2.5 + (lg n)90

h(n) = lnn2 + 0.5n2 lg n k(n) = lnn2 + 0.5(n lg n)2

Answer:

Same-theta equivalence classes and their simplest function:

a(n) = 2n:

Same-theta equivalence: Θ(2n) Simplest function: a(n) = 2n

b(n) = 3n:

Same-theta equivalence: Θ(3n) Simplest function: b(n) = 3n

c(n) = 1.52n:

Same-theta equivalence: Θ(1.52n) Simplest function: c(n) = 2.25n

d(n) = n2 + lg n:

Same-theta equivalence: Θ(n2) Simplest function: d(n) = n2

e(n) = n3 + (lg n)4:

Same-theta equivalence: Θ(n3) Simplest function: e(n) = n3

f(n) = lnn + 2 lg n + 16log n:

Same-theta equivalence: Θ(log n) Simplest function: f(n) = log n

g(n) = n2.5 + (lg n)90:

Same-theta equivalence: Θ(n2.5) Simplest function: g(n) = n2.5

h(n) = lnn2 + 0.5n2 lg n:

Same-theta equivalence: Θ(n2 lg n) Simplest function: h(n) = n2 lg n

k(n) = lnn2 + 0.5(n lg n)2:

Same-theta equivalence: Θ((n lg n)2) Simplest function: k(n) = (n lg n)2

In their increasing order:

log n < n2 < n2 lg n < (n lg n)2 < n2.5 < n3 < 2n < 1.52n < 3n



Bonus: Proof of limn→∞
n2.5

(n lgn)2
= ∞

lim
n→∞

√
n

lg2 n
= lim

n→∞

d(n0.5)
dn

d(lg2 n)
dn

= lim
n→∞

1
2n0.5

2 lg n 1
n

= lim
n→∞

√
n

4 lg n

= lim
n→∞

1

4× 1
n
× 2

√
n
= lim

n→∞

√
n = ∞

⇒ lim
n→∞

n2.5

(n lg n)2
= ∞

Notice, we applied L’Hôpital’s rule twice. We can prove limn→∞
nb

lgk n
= ∞ for any b > 0 and

any integer k by applying the rule k times.

6. Let f(n) = n+lnn and let t(n) = n. Find a positive rational number c and a positive integer

n0 such that, for all n ≥ n0, f(n) ≤ ct(n).

Answer:

To find the positive rational number c:

f(n) ≤ ct(n)

n+ lnn ≤ cn

lnn ≤ (c− 1)n

1 +
lnn

n
≤ c

So, if n goes to ∞, then lnn
n

goes to 0. That is, 1 + lnn
n

is closer to 1.

⇒ we can choose c = 2.

To find the value of n0:

n+ lnn ≤ cn

n+ lnn ≤ 2n

lnn ≤ n

⇒ we have n0 = 1.

NOTE: You can verify it by plugging n = 1 in the equality:

ln 1 ≤ 1

0 ≤ 1

Thus, the inequality holds.

⇒ c = 2 and n0 = 1.



7. Let f(n) = 2n. Let g(n) = 1.7n. Using the defintion of O(g(n)), prove or disprove: f(n) ∈
O(g(n)).

Answer:

In order to disprove that f(n) ∈ O(g(n)), consider a constant c as:

f(n) ≤ cg(n)

2n ≤ c · 1.7n
2n

1.7n
≤ c

(
2

1.7
)n ≤ c

n logc (
2

1.7
) ≤ logc c

nlogc(
2

1.7
) ≤ 1

n ≤ 1

logc(
2
1.7

)

⇒ for all values of n > 1
logc

2

1.7

, f(n) ≤ cg(n) fails.

OR

We can also disprove this by using limit theorem:

It states that: If limn→∞
f(n)
g(n)

= 0, then f(n) ∈ O(g(n)).

So, we have:

limn→∞
2n

1.7n
= ∞

⇒ f(n) /∈ O(g(n))

.



8. Let f(n) = n2 + 100 lg n.

(a) When n = 2, is f(n) closer to n2 or to 100 lg n?

(b) Roughly what is the smallest n such that n2 ≥ 100 lg n?

(c) What is the simplest function g(n) such that f(n) ∈ Θ(g(n))?

Answer:

(a) 100 lg(n)

(b) Notice 100 lg n is only defined on n > 0, and limn→0+ 100 lg n = −∞, while n2 > 0, ∀n > 0.

So there doesn’t exist a smallest n such that n2 > 100 lg n, as there’s always an n′ closer to

0 that also suffices. If we consider only n > 1, then the smallest n that suffices is ≈ 21.

(c) As n increases, n2 grows much faster than 100 log(n). Thus, the simplest function g(n)

such that f(n) ∈ Θ(g(n)) is n2.

9. a) For an input of size (number of bits) n, an algorithm has runtime in the set Θ(n2.5). For

n = 3.7e6 (scientific notation: 3.7×106), the runtime is 11s. What is your best guess for the

runtime when n = 7.4e6? Explain.

b) Is it possible that your guess in a) will be 10 times too small? Explain.

Answer:

(a) Let f(n) = αn2.5 be our guess for the runtime of the algorithm on input size n, with α a

constant scalar (to scale f(3.7e6) to 11 seconds). Clearly, f(n) ∈ Θ(n2.5). Then we have,

f(7.4e6)

f(3.7e6)
=

α(7.4e6)2.5

α(3.7e6)2.5
=

7.42.5

3.72.5
= 22.5 ≈ 5.5 ⇒ f(7.4e6) ≈ 5.5× 11 ≈ 60

Our guess is 60 seconds.

(b) Consider g(n) = β(n2.5 + (lnn)90), with β a constant scalar (to scale g(3.7e6) to 11s).

g(n) ∈ Θ(n2.5). Using a calculator, such as this python script (https://github.com/

ryanbhayward/algs/blob/master/thetademo.py), we see that g(7.4e6)/g(3.7e6) ≈ 55, which

means, the actual runtime could possibly be at 600 seconds—our estimate of f(7.4e6) might

be 10 times too small.

10. For non-negative integers x, y with x < y, explain why the runtime of the usual addition

algorithm is in O(lg y).

Answer:

The addition operation of x and y is done by adding their binary representation (which have

size lg x ∈ O(lg x) and lg y ∈ O(lg y) respectively): digit by digit, starting from the least

significant. For each digit addition: there are at most 3 operations: the addition itself, at

most 1 operation to generate a carry over to the next, and at most 1 operation to incorporate

any carry over from the previous—each of them takes O(1), so total O(1). There are O(lg y)

digits (we assumed y > x). So in total, O(lg y).



11. Repeat the previous question for time Ω(lg y).

Answer:

The binary representation of y has size lg y ∈ Ω(lg y). In the best case: if there is no carry

over, the algorithm still has to iterate over Ω(lg y) digits of y. So in total, Ω(lg y).

12. Recall iterative Fibonacci:

https://webdocs.cs.ualberta.ca/~hayward/304/jem/warmup.html#ifib

a) Justify each step in the runtime analysis:

https://webdocs.cs.ualberta.ca/~hayward/304/asn/itfib.pdf

b) Explain why the runtime of ifib(n) is proportional to
∑n

j=1 lg(fib(j)).

c) Explain why the above sum is in O(n2).

d) Let r(n) be the runtime for ifib(n). For a positive integer t, explain why we expect that

r(2t+1)/r(2t) will be around 4.

Answer:

Answer (a-c). Note the main function in iterative Fibonacci:

def ifib(n):

a,b = 0,1

for _ in range(n):

a, b = b, a+b

return a

To calculate Fib(n) using this function, the loop needs to execute n times and preform the

addition n times. Before the start of the loop, a, b are set to the start of the Fibonacci

sequence. As the loop continues, by induction, a+ b will produce the rest of the sequence. So

after the first iteration, f(2) is calculated, and so on. The cost of this addition is proportional

to the size of the result, which is Θ(log(f(2))) in the first loop (because it takes Θ(log(f(2)))

to store f(2)) and then the second loop will take Θ(log(f(3))) to calculate f(3) and so on.

Therefore, you can represent the time it takes for ifib(n) to calculate f(n) like this:

r(n) ∈ Θ(log f(2) + log f(3) + · · ·+ log f(n))

r(n) ∈ Θ(
n∑

j=2

log f(j))

The second line is just the short form of that summation. Now to simplify this sum, we can

use Binet’s formula. As a reminder, Binet’s formula proposes a closed form expression for

the Fibonacci sequence:

f(n) =
(1+

√
5

2
)n − (1−

√
5

2
)n√

5



As (1−
√
5

2
)n is small enough, we can rewrite that expression and say that f(n) is in:

Θ(
(1+

√
5

2
)n√

5
).

Now using this, we can simplify the runtime:

r(n) ∈ Θ(
n∑

j=2

log f(j)) (1)

r(n) ∈ Θ(
n∑

j=2

log
(1+

√
5

2
)j√

5
) (2)

r(n) ∈ Θ(
n∑

j=2

j log
1+

√
5

2√
5
) (3)

r(n) ∈ Θ(
n∑

j=2

j) (4)

r(n) ∈ Θ(n2) (5)

Line (3) follows from the rule that log nc = c log n, Line (4) follows from the fact that the log

is now a fixed number under Θ and the last line is the closed form of the sum.

Answer (d)

We already know that r(2t) ∈ Θ((2t)2) = Θ(22t) and r(2t+1) ∈ Θ((2t+1)2) = Θ(22t+2). Then

it’s clear that the ratio between them is 4.

13. Recall recursive fib(n):

def fib(n):

if (n<=1): return n

return fib(n-1) + fib(n-2)

Complete the proof of the following claim.

Claim. For all integers n ≥ 0, fib(n) returns f(n), where f(n) is defined as 0 if n is 0, 1 if

n is 1, and the sum of f(n− 1) and f(n− 2) when n is at least 2.

Proof. Argue by induction on n. The claim holds when n is 0 or 1 (why?).

Let x be an integer greater than or equal to 2. Assume that the claim holds for all values of

n in the set {0, 1, . . . , x− 1}. In order to complete the proof, we now want to show that the

claim holds when n is x, i.e. that fib(x) returns f(x).

So what happens when fib(x) executes? Well, x ≥ 2, so the if test evaluates to false, so

the program returns fib(x-1)+fib(x-2).



(now finish the proof . . . )

Answer:

Base Case: The claim holds when n = 0 and n = 1 (if statement evaluates to true):

• For n = 0: fib(0) = 0 = f(0).

• For n = 1: fib(1) = 1 = f(1).

Let x be an integer such that x ≥ 2. Assume the claim holds for all values of n in the set

{0, 1, . . . , x− 1}. Therefore, for all k where 0 ≤ k < x, we have:

fib(k) = f(k).

Inductive Step: We now want to show that the claim holds when n = x, i.e., that fib(x)

returns f(x).

When fib(x) executes, since x ≥ 2, the condition in the if statement evaluates to false. Thus,

the function returns:

fib(x) = fib(x− 1) + fib(x− 2).

From our above assumption,

fib(x− 1) = f(x− 1) and fib(x− 2) = f(x− 2).

Substituting these into our expression:

fib(x) = fib(x− 1) + fib(x− 2) = f(x− 1) + f(x− 2).

By the definition of f(n):

f(x) = f(x− 1) + f(x− 2) for n ≥ 2.

Thus, we have shown that:

fib(x) = f(x).

We have verified the base cases for n = 0 and n = 1, and shown that if the claim holds for

all integers less than x, it also holds for x. Therefore, we can conclude fib(n) returns f(n) for

all integers n ≥ 0 by mathematical induction.


