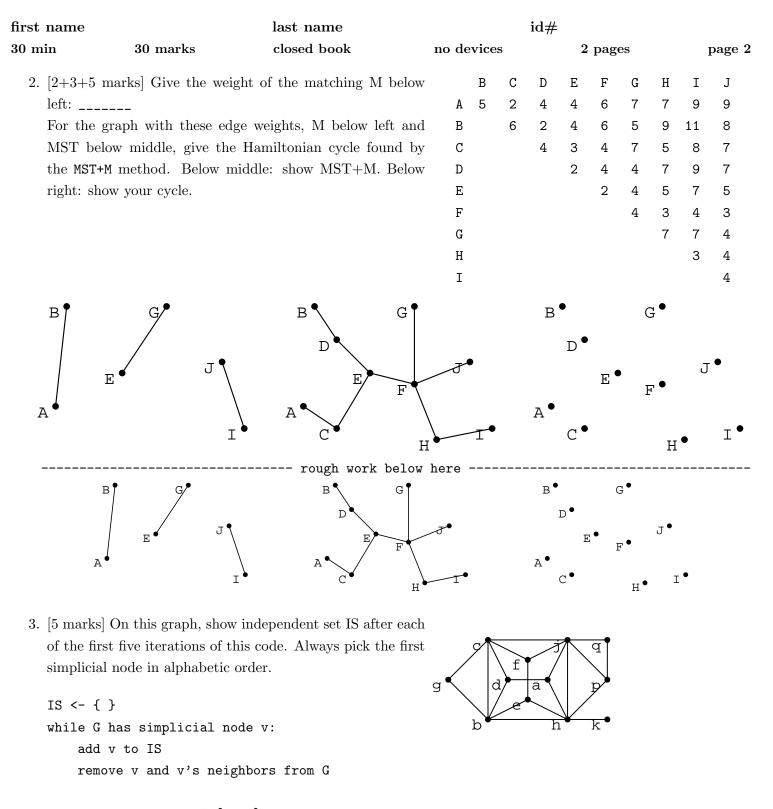

first name		last name	i	d#
30 min	30 marks	closed book	no devices	2 pages

page 1

 [3+3+3+3+1.5+1.5 marks] Below is the integer program (IP) (maximal clique version) for finding a maximum indendent set in this graph. Also below is the dual IP.

primal	dual
max x1 + x2 + x3 + x4 + x5 s.t.	min y1 + y2 + y3 + y4 s.t.
x1 + x2 + x3 <= 1	y1 >= 1
x2 + x4 <= 1	y1 + y2 >= 1
x3 + x5 <= 1	y1 + y3 >= 1
x4 + x5 <= 1	y2 + y4 >= 1
	y3 + y4 >= 1
x1, x2, x3, x4 in {0, 1}	y1, y2, y3, y4 in {0, 1}

What does primal variable x_3 represent?

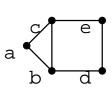

What does dual variable y_2 represent?

Justify/explain this primal constraint: $x_1 + x_2 + x_3 \leq 1$.

Justify/explain this dual constraint: $y_1 + y_2 \ge 1$.

Is x = (1, 0, 0, 0, 0) primal optimal? If yes, write it below: if no, find a primal optimal solution. Is y = (1, 1, 1, 1) dual optimal? If yes, write it below: if no, find a dual optimal solution. Your primal optimal solution:

Your dual optimal solution:



after iteration 1: IS { __ } after iteration 2: IS { __ __ } after iteration 3: IS { __ __ } after iteration 4: IS { __ __ __ } after iteration 5: IS { __ __ __ }

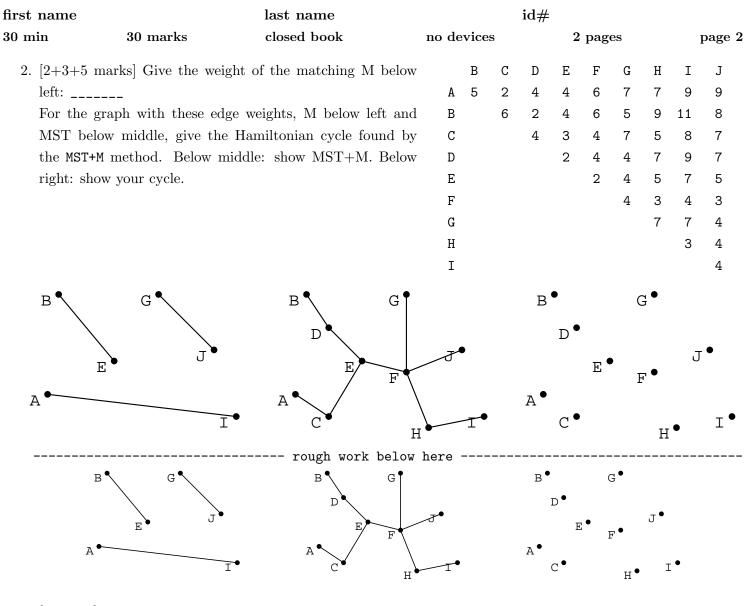
first name		last name	ic	d#
30 min	30 marks	closed book	no devices	2 pages

page 1

 [3+3+3+3+1.5+1.5 marks] Below is the integer program (IP) (maximal clique version) for finding a maximum indendent set in this graph. Also below is the dual IP.

primal	dual
max x1 + x2 + x3 + x4 + x5 s.t.	min y1 + y2 + y3 + y4 s.t.
x1 + x2 + x3 <= 1	y1 >= 1
x2 + x4 <= 1	y1 + y2 >= 1
x3 + x5 <= 1	y1 + y3 >= 1
x4 + x5 <= 1	y2 + y4 >= 1
	y3 + y4 >= 1
x1, x2, x3, x4 in {0, 1}	y1, y2, y3, y4 in {0, 1}

What does primal variable x_3 represent?


What does dual variable y_3 represent?

Justify/explain this primal constraint: $x_1 + x_2 + x_3 \leq 1$.

Justify/explain this dual constraint: $y_1 + y_3 \ge 1$.

Is x = (1, 0, 0, 0, 0) primal optimal? If yes, write it below: if no, find a primal optimal solution. Is y = (1, 1, 1, 1) dual optimal? If yes, write it below: if no, find a dual optimal solution. Your primal optimal solution:

Your dual optimal solution:

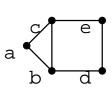
f

а

q

k

b


3. [5 marks] On this graph, show independent set IS after each of the first five iterations of this code. Always pick the first simplicial node in alphabetic order.

IS <- { }
while G has simplicial node v:
 add v to IS
 remove v and v's neighbors from G
after iteration 1: IS { __ }
after iteration 2: IS { __ __ }
after iteration 3: IS { __ __ }
after iteration 4: IS { __ __ }
after iteration 5: IS { __ __ }</pre>

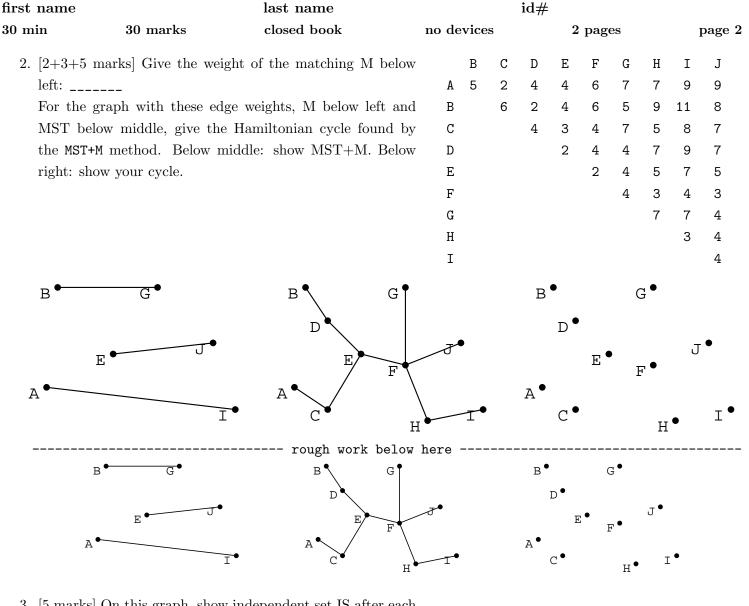
first name		last name	ic	d#
30 min	30 marks	closed book	no devices	2 pages

page 1

 [3+3+3+3+1.5+1.5 marks] Below is the integer program (IP) (maximal clique version) for finding a maximum indendent set in this graph. Also below is the dual IP.

primal	dual
max x1 + x2 + x3 + x4 + x5 s.t.	min y1 + y2 + y3 + y4 s.t.
x1 + x2 + x3 <= 1	y1 >= 1
x2 + x4 <= 1	y1 + y2 >= 1
x3 + x5 <= 1	y1 + y3 >= 1
x4 + x5 <= 1	y2 + y4 >= 1
	y3 + y4 >= 1
x1, x2, x3, x4 in {0, 1}	y1, y2, y3, y4 in {0, 1}

What does primal variable x_3 represent?


What does dual variable y_4 represent?

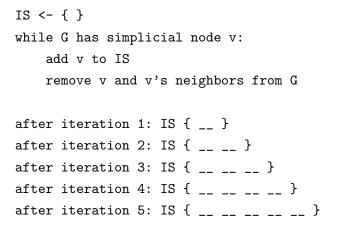
Justify/explain this primal constraint: $x_1 + x_2 + x_3 \leq 1$.

Justify/explain this dual constraint: $y_3 + y_4 \ge 1$.

Is x = (1, 0, 0, 0, 0) primal optimal? If yes, write it below: if no, find a primal optimal solution. Is y = (1, 1, 1, 1) dual optimal? If yes, write it below: if no, find a dual optimal solution. Your primal optimal solution:

Your dual optimal solution:

f


а

q

q

b

3. [5 marks] On this graph, show independent set IS after each of the first five iterations of this code. Always pick the first simplicial node in alphabetic order.

