first name		last name	id	id#	
30 min	30 marks	closed book	no devices	2 pages	page 1

1. [12 marks] For this network, starting with flow 1, use the residual flow method to find a max flow: show residual networks 1,2,3 and flows 2 and 3.

2. [3 marks] a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: 8 { s, a } {b, c, d, e, t}

first name		last name	i	$\mathrm{id}\#$		
30 min	30 marks	closed book	no devices	2 pages	page 2	

3. [2+5 marks] You manage a communications network with users B,C,D and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you \$3, \$5, \$4 respectively per unit bandwidth. Between each pair of users at least 6 units must be routed. Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define xCD, yCD, similarly. For B-D: xBD, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP.

> B 18 b 19 C 16 21

17

a) Give the objective function.

4. [3+5 marks] a) For this bipartite graph G, { (0,5) } is a matching with size 1. Give a maximum matching for G.

22

first name		last name	id	id#	
30 min	30 marks	closed book	no devices	2 pages	page 1

1. [12 marks] For this network, starting with flow 1, use the residual flow method to find a max flow: show residual networks 1,2,3 and flows 2 and 3.

2. [3 marks] a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: 8 { s, a } {b, c, d, e, t}

first name		last name	i	$\mathrm{id}\#$		
30 min	30 marks	closed book	no devices	2 pages	page 2	

- 3. [2+5 marks] You manage a communications network with users B,C,D and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you \$4, \$5, \$3 respectively per unit bandwidth. Between each pair of users at least 7 units must be routed. Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define xCD, yCD, similarly. For B-D: xBD, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP.
 - a) Give the objective function.

4. [3+5 marks] a) For this bipartite graph G, { (0,6) } is a matching with size 1. Give a maximum matching for G.

B 18 b 19 C 16 21

17

t

22

first name		last name	id	id#	
30 min	30 marks	closed book	no devices	2 pages	page 1

1. [12 marks] For this network, starting with flow 1, use the residual flow method to find a max flow: show residual networks 1,2,3 and flows 2 and 3.

2. [3 marks] a) For the above network, give a cut whose capacity is equal to that of the flow that you found in the previous question. Answer like this: 8 { s, a } {b, c, d, e, t}

first name		last name	i	$\mathrm{id}\#$		
30 min	30 marks	closed book	no devices	2 pages	page 2	

3. [2+5 marks] You manage a communications network with users B,C,D and bandwidths as shown in the diagram. You need to establish connections between B-C, B-D, and C-D: these pay you \$5, \$3, \$4 respectively per unit bandwidth. Between each pair of users at least 5 units must be routed. Each connection has two possible routes. For B-C: xBC is traffic volume along B-b-c-C, yBC is volume along B-b-a-d-c-C. For C-D: define xCD, yCD, similarly. For B-D: xBD, yBD is traffic along B-b-c-d-D, B-b-a-d-D respectively. You want to maximize the amount you are paid. Using these variables, formulate this problem as an LP.

B 18 b 19 C 16 21 17

17

a) Give the objective function.

4. [3+5 marks] a) For this bipartite graph G, { (2,5) } is a matching with size 1. Give a maximum matching for G.

22

