first	first name					last name	i								
30 min 30		30 n) marks clo			closed book	no devices	2 pages	page 1						
1.	[5+5]	mar	:ks]												
	Here is output from the dynamic- program-by-weight (DPW) 0-1 knapsack algorithm with $n = 5$, W = 18. Fill in the missing entries						ynami V) 0 n = g entrie	c- Here is python -1 at left. Fill in 5, es def knapDP(va	Here is python code for DPW. It creates the table K shown at left. Fill in the blanks. def knapDP(val, wt, W):						
	(last two columns, last four rows).						rows).	n = len(vai	1)						
	val		[7,	5,	7,	7,	12]								
	wt	_	[7,	5,	8,	6,	10]	K = [[0 fo:	r j in range(n+1)] :	for w in range(W+1)]				
	0	0	0	0	0	0	0	.							
	1	0	0	0	0	0	0	for j in ra	ange(1,n+1):						
	∠ 3	0	0	0	0	0	0	for w in	range(W+1)·						
	4	0	0	0	0	0	0	101 w 111	Tunge (W T) .						
	5	0	0	5	5	5	5	K[w][j]] =	if w < wt[j-	1] \				
	6	0	0	5	5	7	7	, i i i i i i i i i i i i i i i i i i i		, i i i i i i i i i i i i i i i i i i i					
	7	0	7	7	7	7	7	else	max(,)				
	8	0	7	7	7	7	7								
	9	0	7	7	7	7	7								
	10	0	7	7	7	7	12								
	11	0	7	7	7	12	12								
	12	0	7	12	12	12	12								
	13	0	7	12	12	14	14								
	14 15	0	7	12	17	14	14								
	16	0	' 7	12 12	14 14										
	17	0	' 7	12	14										
	18	0	7	12	14										
		-	-												

2. [5 marks] Let S(n) be $\{1, 2, ..., n\}$. Let P(n) be the set of all subsets of S(n). Let f(n) be the sum, over all p in P, of the size of p. E.g. $P(3) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$, so f(3) = 0+1+1+1+2+2+2+3 = 12. Claim. $f(n) = n \times 2^{n-1}$. Proof of Claim. Assume $n \ge 1$. Consider the 2^n subsets of an n-set. If we pair each subset S with its complement T (the set of elements not in S), we see that there are exactly $2^n/2 = 2^{n-1}$ pairs of subsets. E.g. give the four pairs of subsets of P(3):

So f(n) (the sum of the sizes of the 2^n subsets) equals the sum, over all pairs, of the sizes of the two sets in the pair. Finish the proof of the claim:

first name		last name	id	$\mathrm{id}\#$			
30 min	30 marks	closed book	no devices	2 pages	page 2		

3. [7 marks] Set cover is the problem with these instances and query: Instance. A set U, a set $S = \{S_1, S_2, \ldots, S_t\}$ of subsets of U, and an integer k. Query. Is there a subset C of S of size k whose union equals U?

a) In the set cover instance below, $U = \{0, 1, ..., 8\}$ and $S = \{S0, S1, ..., S10\}$. Does this instance have a cover of size 6? (circle one) yes no b) Justify your answer (use the space below at the right).

	0	1	2	3	4	5	6	7	8
S0	-	-	-	-	-	-	-	*	*
S1	-	-	*	-	-	-	-	-	-
S2	-	*	*	-	-	-	*	-	*
S3	*	-	-	*	-	*	-	*	-
S4	-	-	-	*	-	-	-	-	-
S5	*	-	-	-	-	-	-	-	-
S6	-	-	-	-	*	*	*	-	-
S7	*	-	-	-	-	*	-	-	*
S8	-	-	-	-	-	-	-	-	-
S9	-	-	-	-	*	-	-	-	*
S10	-	*	-	-	-	*	*	-	-

4. [8 marks] For this 4-pin graph, demonstrate the MST-approx algorithm to find a Steiner tree.

a) On the left diagram, draw the helper graph G you will use. Label all edges appropriately. With thick edges, show an MST of G. b) On the right diagram, draw a Steiner tree corresponding to your MST.

first name				las				ast name	i	id#			
30 m	in	in 30		30 marks			C	losed book	no devices	2 pages page			
1.	[5+5 n	narks	5]										
	Here is output from dynamic program-by-weight (DP) 0-1 knap sack, $n = 5$, $W = 18$. Fill in the						amic- knap- n the	 Here is python code for DPW. It creates the table T shown at left. Fill in the blanks. def knapDP(val, wt. W): 					
	last for	ur ro	ws).	last				n = len(val	1)				
	val		[6,	5,	7,	6,	11]						
	wt		[7,	5,	8,	6,	10]	T = [[0 fo:	r j in range(n+1)]	for w in range(W+1)]		
	0	0	0	0	0	0	0						
	1	0	0	0	0	0	0	for j in ra	ange(1,n+1):				
	2	0	0	0	0	0	0						
	3	0	0	0	0	0	0	for w in	<pre>range(W+1):</pre>				
	4	0	0	0	0	0	0						
	5	0	0	5	5	5	5	T[w][j]] =	if w < wt[j-	1] \		
	6	0	0	5	5	6	6						
	7	0	6	6	6	6	6	else	max(,)		
	8	0	6	6	7	7	7						
	9	0	6	6	7	7	7						
	10	0	6	6	7	7	11						
	11	0	6	6	7	11	11						
	12	0	6	11	11	11	11						
	13	0	6	11	12	12	12						
	14	0	6	11	12	13	13						
	15	0	6	11	13								
	16	0	6	11	13								
	17	0	6	11	13								
	18	0	6	11	13								

2. [5 marks] Let S(n) be $\{1, 2, ..., n\}$. Let P(n) be the set of all subsets of S(n). Let f(n) be the sum, over all p in P, of the size of p. E.g. $P(3) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$, so f(3) = 0+1+1+1+2+2+2+3 = 12. Claim. $f(n) = n \times 2^{n-1}$. Proof of Claim. Assume $n \ge 1$. Consider the 2^n subsets of an n-set. If we pair each subset S with its complement T (the set of elements not in S), we see that there are exactly $2^n/2 = 2^{n-1}$ pairs of subsets. E.g. give the four pairs of subsets of P(3):

So f(n) (the sum of the sizes of the 2^n subsets) equals the sum, over all pairs, of the sizes of the two sets in the pair. Finish the proof of the claim:

first name		last name	id	$\mathrm{id}\#$			
30 min	30 marks	closed book	no devices	2 pages	page 2		

3. [7 marks] Set cover is the problem with these instances and query: Instance. A set U, a set $S = \{S_1, S_2, \ldots, S_t\}$ of subsets of U, and an integer k. Query. Is there a subset C of S of size k whose union equals U?

a) In the set cover instance below, $U = \{0, 1, ..., 8\}$ and $S = \{S0, S1, ..., S10\}$. Does this instance have a cover of size 6? (circle one) yes no b) Justify your answer (use the space below at the right).

	0	1	2	3	4	5	6	7	8	
S0	-	-	-	*	-	-	-	-	_	
S1	*	-	-	-	-	-	-	-	-	
S2	-	-	-	-	*	*	*	-	-	
S3	*	-	-	-	-	*	-	-	*	
S4	-	-	-	-	-	-	-	-	-	
S5	-	-	-	-	*	-	-	-	*	
S6	-	*	-	-	-	*	*	-	-	
S7	-	-	-	-	-	-	-	*	*	
S8	-	-	*	-	-	-	-	-	-	
S9	-	*	*	-	-	-	*	-	*	
S10	*	_	_	*	_	*	_	*	_	

4. [8 marks] For this 4-pin graph, demonstrate the MST-approx algorithm to find a Steiner tree.

a) On the left diagram, draw the helper graph G you will use. Label all edges appropriately. With thick edges, show an MST of G. b) On the right diagram, draw a Steiner tree corresponding to your MST.

first	first namelast30 min30 marksclost		last name			id#								
30 m			closed book	no devices	2 pages	page 1								
1.	[5+5]	mar	ks]											
	Here is output from the dynamic- program-by-weight (DPW) 0-1 knapsack algorithm with $n = 5$, W = 18. Fill in the missing entries (last two columns, last four rows).						ynamic- N 0-1 n = 5 g entries rows).	- Here is python I shown at left. F , , def knapDP(va	Here is python code for DPW. It creates the data table D shown at left. Fill in the blanks. def knapDP(val, wt, W):					
								n = len(val)					
	val		[6,	8,	6,	9,	5]				_			
	wt	_	[7,	8,	6,	10,	5]	D = [[0 for	j in range(n+1)]	for w in range(W+1)]			
	0	0	0	0	0	0	0							
	1	0	0	0	0	0	0	for j in ra	nge(1,n+1):					
	2	0	0	0	0	0	0	for u in	range (U+1).					
	З Д	0	0	0	0	0	0	IOI W III	range(w+r).					
	- 5	0	0	0	0	0	5	D[w][i]	=	if w < wt[i−	1] \			
	6	0	0	0	6	6	6				、			
	7	0	6	6	6	6	6	else	max(,)			
	8	0	6	8	8	8	8							
	9	0	6	8	8	8	8							
	10	0	6	8	8	9	9							
	11	0	6	8	8	9	11							
	12	0	6	8	8	9	11							
	13	0	6	8	12	12	13							
	14	0	6	8	14	14	14							
	15	0	6	14	14									
	16	0	6	14	14									
	17	0	6	14	14									
	18	0	6	14	14									

2. [5 marks] Let S(n) be $\{1, 2, ..., n\}$. Let P(n) be the set of all subsets of S(n). Let f(n) be the sum, over all p in P, of the size of p. E.g. $P(3) = \{\{\}, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$, so f(3) = 0+1+1+1+2+2+2+3 = 12. Claim. $f(n) = n \times 2^{n-1}$. Proof of Claim. Assume $n \ge 1$. Consider the 2^n subsets of an n-set. If we pair each subset S with its complement T (the set of elements not in S), we see that there are exactly $2^n/2 = 2^{n-1}$ pairs of subsets. E.g. give the four pairs of subsets of P(3):

So f(n) (the sum of the sizes of the 2^n subsets) equals the sum, over all pairs, of the sizes of the two sets in the pair. Finish the proof of the claim:

first name		last name	id	$\mathrm{id}\#$			
30 min	30 marks	closed book	no devices	2 pages	page 2		

3. [7 marks] Set cover is the problem with these instances and query: Instance. A set U, a set $S = \{S_1, S_2, \ldots, S_t\}$ of subsets of U, and an integer k. Query. Is there a subset C of S of size k whose union equals U?

a) In the set cover instance below, $U = \{0, 1, ..., 8\}$ and $S = \{S0, S1, ..., S10\}$. Does this instance have a cover of size 6? (circle one) yes no b) Justify your answer (use the space below at the right).

	0	1	2	3	4	5	6	7	8	
S0	*	-	-	-	-	*	-	-	*	
S1	-	-	-	-	-	-	-	-	-	
S2	-	-	-	-	*	-	-	-	*	
S3	-	*	-	-	-	*	*	-	-	
S4	-	-	-	-	-	-	-	*	*	
S5	-	-	*	-	-	-	-	-	-	
S6	-	*	*	-	-	-	*	-	*	
S7	*	-	-	*	-	*	-	*	-	
S8	-	-	-	*	-	-	-	-	-	
S9	*	-	-	-	-	-	-	-	-	
S10	-	_	-	_	*	*	*	_	-	

4. [8 marks] For this 4-pin graph, demonstrate the MST-approx algorithm to find a Steiner tree.

a) On the left diagram, draw the helper graph G you will use. Label all edges appropriately. With thick edges, show an MST of G. b) On the right diagram, draw a Steiner tree corresponding to your MST.

