
first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 1

1. At right, unscramble these lines from kruskalDemo.py. Write line numbers only: indent properly. We

have written the first line number for you.

if ra != rb: #0 (2) ___ ___ ___ ___

for v in G: P[v] = v #1 ___ ___ ___ ___ ___

L = createEdgeList(G) #2 ___ ___ ___ ___ ___

P = {} #3 ___ ___ ___ ___ ___

print(a,b,t[2]) #4 ___ ___ ___ ___ ___

ra, rb = UF.myfind(a,P), UF.myfind(b,P) #5 ___ ___ ___ ___ ___

t = extractmin(L) #6 ___ ___ ___ ___ ___

UF.myunion(ra,rb,P) #7 ___ ___ ___ ___ ___

while len(L) > 0: #8 ___ ___ ___ ___ ___

a, b = t[0], t[1] #9 ___ ___ ___ ___ ___

2. Here is the start of the analysis of extract-min from Kruskal’s algorithm: When we create the edge

list L, we construct L from G which has n vertices. We have a for loop that iterates

through all vertices v ∈ G which takes O(n) time. Then we iterate through the edges of

v, and there could be n−1 of these, so we are now taking at least O(n2) time. The rest

of the steps take constant time, so creating L takes O(n2) time. Next we begin a while

loop that iterates through L, L has O(n2) edges so this now takes at least O(n2) time.

Then extractmin iterates again through L, taking O(n2) time. In total, the algorithm takes

O(n4) time. The rest of the steps in this while loop are dominated in time complexity

from extractmin so, so far, total runtime is in O(n4).

(a) What should the final big O bound on the runtime be?

(b) Finish the analysis.



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 2

3. Here is the start of a proof of correctness of Kruskal’s algorithm. Input: a graph G with n nodes,

output: a set K of edges of G. We want to show that K is an MST. Let M be any MST of G. Case

1: if K = M then we are done. Case 2: assume K is not equal to M . Label edges e1, e2, . . . , em in the

order considered by the algorithm. Let k be the smallest index such that ek is not in M . Let C be the

cycle of M + ek. Let ej be any edge of C that is not in K. Let M1 be M + ek − ej. M1 is a spanning

subgraph of G. M1 is connected and so a spanning tree. Cost(ej) ≥ cost(ek) (∗). Cost(ej) ≤ cost(ek)

(∗∗). M1 is an MST (∗ ∗ ∗).

(a) Justify (∗)

(b) Finish the proof.

4. Below is a graph G, the edge set K returned by Kruskal’s algorithm, and an MST M . In the above

proof, what is ek? What are the possible choices for ej?

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 3

5. Is {0,A} an unhappy couple? Explain carefully.

Is {3,D} an unhappy couple? Explain carefully.

[C B A D] 0

[A D B C] 1

[A B C D] 2

[D A C B] 3

A [1 2 0 3]

B [2 3 1 0]

C [2 0 1 3]

D [2 0 1 3]

6. Here is a diagram of the propose-maybe-reject stable matching algorithm after some number of rounds.

[C B D A] 0

[A D B C] 1

[A B C D] 2

[D A C B] 3

A [3 2 0 1]

B [2 3 1 0]

C [2 0 1 3]

D [2 0 1 3]

a) For each proposer (hospital), in the next round, what new proposals are made? Explain carefully.

b) After the new proposals are made, what rejections are made by maybe-rejecters (residents)? Explain

carefully.



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 1

1. At right, unscramble these lines from kruskalDemo.py. Write line numbers only: indent properly. We

have written the first line number for you.

while len(L) > 0: #0 (4) ___ ___ ___ ___

a, b = t[0], t[1] #1 ___ ___ ___ ___ ___

if ra != rb: #2 ___ ___ ___ ___ ___

for v in G: P[v] = v #3 ___ ___ ___ ___ ___

L = createEdgeList(G) #4 ___ ___ ___ ___ ___

P = {} #5 ___ ___ ___ ___ ___

print(a,b,t[2]) #6 ___ ___ ___ ___ ___

ra, rb = UF.myfind(a,P), UF.myfind(b,P) #7 ___ ___ ___ ___ ___

t = extractmin(L) #8 ___ ___ ___ ___ ___

UF.myunion(ra,rb,P) #9 ___ ___ ___ ___ ___

2. Here is the start of the analysis of extract-min from Kruskal’s algorithm: When we create the edge

list L, we construct L from G which has n vertices. We have a for loop that iterates

through all vertices v ∈ G which takes O(n) time. Then we iterate through the edges of

v, and there could be n−1 of these, so we are now taking at least O(n2) time. The rest

of the steps take constant time, so creating L takes O(n2) time. Next we begin a while

loop that iterates through L, L has O(n2) edges so this now takes at least O(n2) time.

Then extractmin iterates again through L, taking O(n2) time. In total, the algorithm takes

O(n4) time. The rest of the steps in this while loop are dominated in time complexity

from extractmin so, so far, total runtime is in O(n4).

(a) What should the final big O bound on the runtime be?

(b) Finish the analysis.



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 2

3. Here is the start of a proof of correctness of Kruskal’s algorithm. Input: a graph G with n nodes,

output: a set K of edges of G. We want to show that K is an MST. Let M be any MST of G. Case

1: if K = M then we are done. Case 2: assume K is not equal to M . Label edges e1, e2, . . . , em in the

order considered by the algorithm. Let k be the smallest index such that ek is not in M . Let C be the

cycle of M + ek. Let ej be any edge of C that is not in K. Let M1 be M + ek − ej. M1 is a spanning

subgraph of G. M1 is connected and so a spanning tree. Cost(ej) ≥ cost(ek) (∗). Cost(ej) ≤ cost(ek)

(∗∗). M1 is an MST (∗ ∗ ∗).

(a) Justify (∗∗)

(b) Finish the proof.

4. Below is a graph G, the edge set K returned by Kruskal’s algorithm, and an MST M . In the above

proof, what is ek? What are the possible choices for ej?

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 3

5. Below, is {2,B} an unhappy couple? Explain carefully.

Below, is {1,C} an unhappy couple? Explain carefully.
[C B D A] 0

[A D B C] 1

[A B C D] 2

[D A C B] 3

A [1 2 0 3]

B [2 3 1 0]

C [2 0 1 3]

D [2 0 1 3]

6. Here is a diagram of the propose-maybe-reject stable matching algorithm after some number of rounds.

[G F H E] 0

[E H F G] 1

[E F G H] 2

[H E G F] 3

E [3 2 0 1]

F [2 3 1 0]

G [2 0 1 3]

H [2 0 1 3]

a) For each proposer (hospital), in the next round, what new proposals are made? Explain carefully.

b) After the new proposals are made, what rejections are made by maybe-rejecters (residents)? Explain

carefully.



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 1

1. At right, unscramble these lines from kruskalDemo.py. Write line numbers only: indent properly. We

have written the first line number for you.

P = {} #0 (9_ ___ ___ ___ ___

print(a,b,t[2]) #1 ___ ___ ___ ___ ___

ra, rb = UF.myfind(a,P), UF.myfind(b,P) #2 ___ ___ ___ ___ ___

t = extractmin(L) #3 ___ ___ ___ ___ ___

UF.myunion(ra,rb,P) #4 ___ ___ ___ ___ ___

while len(L) > 0: #5 ___ ___ ___ ___ ___

a, b = t[0], t[1] #6 ___ ___ ___ ___ ___

if ra != rb: #7 ___ ___ ___ ___ ___

for v in G: P[v] = v #8 ___ ___ ___ ___ ___

L = createEdgeList(G) #9 ___ ___ ___ ___ ___

2. Here is the start of the analysis of extract-min from Kruskal’s algorithm: When we create the edge

list L, we construct L from G which has n vertices. We have a for loop that iterates

through all vertices v ∈ G which takes O(n) time. Then we iterate through the edges of

v, and there could be n−1 of these, so we are now taking at least O(n2) time. The rest

of the steps take constant time, so creating L takes O(n2) time. Next we begin a while

loop that iterates through L, L has O(n2) edges so this now takes at least O(n2) time.

Then extractmin iterates again through L, taking O(n2) time. In total, the algorithm takes

O(n4) time. The rest of the steps in this while loop are dominated in time complexity

from extractmin so, so far, total runtime is in O(n4).

(a) What should the final big O bound on the runtime be?

(b) Finish the analysis.



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 2

3. Here is the start of a proof of correctness of Kruskal’s algorithm. Input: a graph G with n nodes,

output: a set K of edges of G. We want to show that K is an MST. Let M be any MST of G. Case

1: if K = M then we are done. Case 2: assume K is not equal to M . Label edges e1, e2, . . . , em in the

order considered by the algorithm. Let k be the smallest index such that ek is not in M . Let C be the

cycle of M + ek. Let ej be any edge of C that is not in K. Let M1 be M + ek − ej. M1 is a spanning

subgraph of G. M1 is connected and so a spanning tree. Cost(ej) ≥ cost(ek) (∗). Cost(ej) ≤ cost(ek)

(∗∗). M1 is an MST (∗ ∗ ∗).

(a) Justify (∗ ∗ ∗)

(b) Finish the proof.

4. Below is a graph G, the edge set K returned by Kruskal’s algorithm, and an MST M . In the above

proof, what is ek? What are the possible choices for ej?

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1

F G

C D E

A B

4

5 8

7

9 4 6 4

2 5 4 1



first name last name id#

each page 10 marks 30 min closed book no devices 3 pages page 3

5. Below, is {0,B} an unhappy couple? Explain carefully.

Below, is {3,C} an unhappy couple? Explain carefully.
[C B D A] 0

[A D B C] 1

[A B C D] 2

[D A C B] 3

A [1 2 0 3]

B [2 3 1 0]

C [2 0 1 3]

D [2 0 1 3]

6. Here is a diagram of the propose-maybe-reject stable matching algorithm after some number of rounds.

[U T V S] 0

[S V T U] 1

[S T U V] 2

[V S U T] 3

S [3 2 0 1]

T [2 3 1 0]

U [2 0 1 3]

V [2 0 1 3]

a) For each proposer (hospital), in the next round, what new proposals are made? Explain carefully.

b) After the new proposals are made, what rejections are made by maybe-rejecters (residents)? Explain

carefully.


