cmput 304 2024 study questions 3 (with solutions)

1. In the box at right,

forH = [[0,1,2],[1,0,2],[1,0,2]]
and R = [[1,2,0] ) [0,1,2] > [2:1101]7
show the output printed by m=propose_reject(H,R).

def propose_reject(H,R):
n = pref_system_size(H,R)
F,C = [None] * n, [0 for j in range(n)]
rejection = True
while rejection:
rejection = False
for j in range(n):
h_choice = H[j][C[j]] # current H proposal
if F[h_choice] == None: #R has no prop’ls
Fl[h_choice] = j
print(’ ’,j,’ prop ’,h_choice,’: maybe’)
elif F[h_choice] != j: #R has 2 prop’ls
r_maybe = F[h_choice] #R’s current prop’l
if prefers(R[h_choice], j, r_maybe):
r_reject, r_maybe = r_maybe, j
F[h_choice] = r_maybe
else:
r_reject = j
print(’ ’,j,’prop’,h_choice,
’:pref’,r_maybe,’,rej’,r_reject)
Clr_reject] += 1 # H[j_rej.]: next pref
rejection = True # a prop’l was rejected
P = [H[j1[C[j]] for j in range(n)]
print(’\nj P C F’)
[print(j, P[jl, C[j]l, F[jl) for j in range(n)]

return P

Show your rough work here.



2. Give a matching preference system with size 3 for which the propose-reject algorithm always finds a stable

matching, or explain why this is not possible.

3. def myunion(x,y,P): Here P represents 8 components of size 1:
rootx = findGP(x,P)
rooty = findGP(y,P) j 01 2 3 4 5 6 7
P[rootx] = rooty P[] 0 1 2 3 4
def findGP(x, P): Show P after myunion(1,2,P):
px = P[x]
if x==px: return x P[] __ __ __ __ __ __ __ __

gx = P[px] #grandparent

while px != gx: ... and then after myunion(2,3,P):
Plx] = gx
X = px POj] __ __ __ __ __ __ __ __
px = g
gx = P[gx] ... and then after myunion(3,4,P):

return px

PLj] o . __

. and then after myunion(4,5,P):

P[j] __



P>
=3

V4 D [ad
LAY L ~J

W y a C e g

Recall: a cut of a graph is a partition of the node set into two non-empty subsets. E.g. on the small graph
(above left), {{w,x}, {y,2}} is a cut with cross-edges {F,G,H,J}. RKMC is the randomized Kruskal min cut

algorithm: unless otherwise stated, its input is a uniform-random permutation of the edges.

. For the big graph, give each min cut (partition and cross-edges) ...

. ...and give the forest (draw on the nodes below) and cut (partition and cross-edges) found by RKMC when
edges are input in order QPRKNTMLJUVS.

b d f h

° ° ° °
a C e g

. a) By the theorem from class, for the graph above, if we run RKMC one time, we know from the theorem in

class that the probability that the cut found is a min cut is at least what?

b) Let a be probability from part a). Let p be the true probability that, for the graph above, if we run RKMC

one time, the cut found is a min cut. Which of these is true: a < p, a = p, a > p? Prove your answer.

. a) Consider a preference system for the stable matching problem in which hospital hA’s first choice is resident r

and resident r’s first choice is hospital h. Prove/disprove: in any stable matching, h is matched with r.

b) Prove/disprove: for any n > 1, there is a preference system of size n (n hospitals and n residents) with only

one stable matching.



solutions

. Run class github code /graphs/stablematch/sm.py. Check your answer in the quiz 3 solutions from 2023.
. Check your answer in the quiz 3 solutions from 2023.

. You can find this code in /graphs/paths/UF.py. Check your answer in the quiz 3 solutions from 2023.

. Check your answer in the quiz 3 solutions from 2023.

. Check your answer in the quiz 3 solutions from 2023.

. a)at least 2/(n(n — 1)) =2/(87) =1/28.

b) a < p. There are three min cuts, with respective cross-edge sets {J, M}, {U,V}, {P,Q}. So we get a min
cut if J, M are the last two edges picked, so if J is last and M second-last (1/12 % 1/11) or M is last and J is
second-last (same probability), so total 1/66. We also get a min cut if U,V are the last two edges picked, or if

P, Q are the last two edges picked. These three events are independent (they do not interfere with each other),
so we get a min cut with probability at least 1/66 4+ 1/66 + 1/66 = 3/66 = 1/22 > 1/28. So a < p.

(In fact, with a bit more work we can prove that p is even bigger, e.g. if the last three edges picked are {J, M, T'}:

there are many more cases.)

. a) Proof. Consider any matching in which h and r are not matched. Then h is matched with some r’ # r and
r is matched with some h’ # h. Then h prefers r to its match r’ and r prefers h to its match A/, so {h,r} is an

unhappy couple, so the matching is not stable.

b) Consider the preference system in which, for each index j, hospital h;’s first choice is resident r; and resident
r;’s first choice is hospital h;. Then by a) we know that in any stable matching, we must have h; matched with

rj for each j. But there is only 1 such matching.



