

1- Prove $C(0)$. After line $\underline{3}$ executed $\underline{\underline{0}}$ times
:(1) $a=f(0)$
(2) $b=f(1)$

Answer: by initialization of $\underset{z}{a}$ and b on line \#1 and using the fact that our program is just only on line $\#^{2}$. Then, a and b has not changed yet $\Rightarrow a=0=f(0)$

$$
b=1=f(1)
$$

Prove $((x+1)$, assuming $C(x)$.
Answer: Induction!

We are about to execute line $\# 3$ for the $x_{1} 1$ th time. Since we assumed $(C x)$, we know
(1) $a=f(x)$
(2) $b=f(x+1)$

Then, after we execute $\# 3$ again we have

$$
a=f(x+1) \text { AND } \quad b=f(x)+f(x+1)=f(x+2)
$$

2-Fill the table.

j	0	1	2	3	4	5	6	7	8	9	
S	0	4	8	5	11	2	9	6	3	12	
L	1	2	3	3	4	2	4	4	3	5	

j	0	1	2	3	4	5	6	7	8	9	
S	8	5	11	2	9	6	3	12	0	4	
L	1	1	2	1	2	2	2	3	1	3	

j	0	1	2	3	4	5	6	7	8	9	
S	12	0	4	8	5	4	2	9	6	3	
L	1	1	2	3	3	4	2	4	4	3	

3. If $\left(S_{1}, S_{2}, S_{5}, S_{7}\right)$ is an increasing subseq.

j	0	1	2	3	4	5	6
7							
	$1(j)$	1	2	$3,2,1$	$4,3,2,1$	3	$4,3,2,1$
	4						

$2(0) \rightarrow$ only 1 . since the LIS ending at S_{0} is only So.
$2(1) \rightarrow 1$ we know $S_{0}>S_{1}$, $0 . \omega$ So $S_{1} S_{2} S_{5} S_{7}$ would be increasing our $f(7) \geqslant 5$

If $\left(S_{1}, S_{3}, S_{4}, S_{7}\right)$ is an increasing subseg.

j	0	1	2	3	4	5	6
$2(j)$	1	1	1,2	2	3	$1,2,3,4$	$1,2,3,4$

$2(0) \rightarrow$ only 1. since the LIS ending at S_{0} is only So.
$2(1) \rightarrow 1$ wee know $S_{0}>S_{1}$, O.W $S_{0} S_{1} S_{3} S_{4} S_{7}$ would be increasing ant $f(7) \geqslant 5$

If $S_{1} S_{4} S_{5} S_{7}$ is an increasing subseg

j							
$2(j)$	0	1	2	3	4	5	6
1	1	1,2	$1,2,3$	2	3	$7,2,3,4$	4

$Z(0) \rightarrow$ only 1. since the LIS ending at S_{0} is only So.
$2(1) \rightarrow 1$ we know $S_{0}>S_{1}$, 0.w $S_{0} S_{1} S_{4} S_{5} S_{7}$ would be increasing inf $f(7) \geqslant 5$

4 CBDAOA 1203

a) is $\{3, A\}$ unhappy? 3 prefers A to B

A does not prefer 3 to 0
\Rightarrow not an unhappy couple
b) is $\{1,1]\}$ un happy? They are matched a ready.

So by def, they cant be unhappy.
C) is $\{2, A\}$ unhappy? 2 prefers A to C
A prefers 2 to 0
\Rightarrow they are unhappy
$d)$ is $\{2, B\}$ whappy! 2 prefers B to C
B prefers 2 to 3
\Rightarrow they are unhappy
$e)$ is $\{0, A\}$ unhappy? They are matched already.
So by def, they cant be unhappy.

a) is $\{0, A\}$ unhappy! A prefers 0 to 3
O prefers A to D
\Rightarrow Unhappy
b) is $\{2, C\}$ unhappy!. They are matched already.

So by def, they can't be unhappy.
C) is $\{3, D\}$ unhappy? prefers D to A
D does not preten 3 to 0
\rightarrow not unhappy
5) is $u=0, v=1, w=1, x=1$ valid? No!
since $w=1 x=1$ is not a preference list.
is $u=0 \quad v=1$ valid? Yes unstable? yes we have $\left\{0, A^{\prime}\right\}$ as unhappy!
is $u=0 \quad v=1 \quad u=1 \quad x=0$ valid yes unstable? yes $\{O, A T$ Unhappy
is $u=0 \quad v=0 \quad w=1 \quad x=1$ valid? No! this is not a preference list.
is $u=1 \quad v=0 \quad w=1 \quad x=0$ valid! yes unstable yes $\{1, B\}$ is unhappy.

$$
\text { is } a=1 \quad v=1 \quad w=1 \quad x=0 \text { valid! No }
$$

