quiz 1 solutions

1. Answer as shown with the example from class:
https://webdocs.cs.ualberta.ca/~hayward/304/jem/warmup.html\# sqrt
$/ / 47093=? \quad \backslash / 45419=? \quad$ = $47171=?$
*** step 1: largest x such that $\mathrm{x} * \mathrm{x}<=4$? $\mathrm{x}=2$

2

71
*** step 2: largest y such that $(2 * 20 * 2+y) * y<=70 ? 54 ? 71 ?$
....

Check the rest of your answer using old_sqrt.py from the github repo.

$$
\begin{aligned}
& 4=2 * 2+0 \\
& 70=41 * 1+29 \\
& 2993=427 * 7+4 \quad 47093=217 * 217+4 \\
& 4=2 * 2+0 \\
& 54=41 * 1+13 \\
& 1319=423 * 3+5045419=213 * 213+50 \\
& 4=2 * 2+0 \\
& 71=41 * 1+30 \\
& 3071=427 * 7+8247171=217 * 217+82
\end{aligned}
$$

2. a) Check your answer by executing the python code.
b) Proof. Argue by contradiction. Let x be the smallest integer for which collatz(n) does not terminate. Assume that x is even, say $x=2 \times y$. Inputs to collatz are positive, so we can assume that x is at least 2 , so y is at least 1 .
collatz (x) initializes parameter n with value x and then enters the while loop. Case 1: $n=1$. Execution skips the loop body.

Case 2: $n \neq 1$. Execution enters the loop body. Since n is even, n is now assigned the value $\mathrm{n} / / 2$, so the value of n is now y, and execution continues. Since $y<x$, by assumption collatz (y) terminates, so the while loop execution terminates.

In each case the original execution of collatz(x) terminates, contradicting our assumption. So our assumption must be false. So our assumption that x is even must be false. So if the Collatz conjecture fails for some integer, and x is the smallest such integer, then x cannot be even, so x must be odd.
3. Consider a call to ifib(n). Here are the operations performed:
$a, b=0,1$
$\mathrm{a}, \mathrm{b}=\mathrm{b}, \mathrm{a}+\mathrm{b}$ (for loop, _ is 0)
$a, b=b, a+b$ (for loop, _ is 1)
$\mathrm{a}, \mathrm{b}=\mathrm{b}, \mathrm{a}+\mathrm{b} \quad .$.
$a, b=b, a+b$ (for loop, _ is $n-1$)
In each line we have the assignment $\mathrm{a}=\mathrm{b}$, the addition $\mathrm{a}+\mathrm{b}$, and the asssignment $\mathrm{b}=\mathrm{a}+\mathrm{b}$. For each of these three operations, the time needed is proportional respectively to the number of bits in b, the number of bits in the sum $\mathrm{a}+\mathrm{b}$, and the number of bits in the sum $\mathrm{a}+\mathrm{b}$, so in time $\quad \Theta(\lg (b)+\lg (a+b)+\lg (a+b) \quad=\Theta(\lg (a+b))$.

The number of bits needed to store an integer k is less than $1+\lg (k)$ so in $\Theta(\lg (k))$.

The j 'th time the loop executes, $a+b=\mathrm{fib}(j+2)$,
so the total runtime is in

$$
\begin{aligned}
\Theta(1)+\Theta\left(\sum_{j=0}^{n-1} \lg (\mathrm{fib}(j+2))\right) & = \\
\Theta\left(\sum_{j=1}^{n} \lg (\mathrm{fib}(j))\right)+\Theta(\lg (\mathrm{fib}(n+1))) & = \\
\Theta\left(\sum_{j=1}^{n} \lg (\mathrm{fib}(j))\right) &
\end{aligned}
$$

since $\lg (\operatorname{fib}(n+1)) \mathrm{s}$ in $\Theta(\lg (\mathrm{fib}(n)))$.

