
quiz 1 solutions

1. Answer as shown with the example from class:

https://webdocs.cs.ualberta.ca/~hayward/304/jem/warmup.html#

sqrt

-------- -------- --------

\/ 4 70 93 = ? \/ 4 54 19 = ? \/ 4 71 71 = ?

*** step 1: largest x such that x*x <= 4? x = 2

2 2 2

-------- -------- --------

\/ 4 70 93 \/ 4 54 19 \/ 4 71 71

4 4 4

------- ------- --------

70 54 71

*** step 2: largest y such that (2*20*2 +y)*y <= 70? 54? 71?

....

Check the rest of your answer using old_sqrt.py from the github

repo.

4 = 2 * 2 + 0

70 = 41 * 1 + 29

2993 = 427 * 7 + 4 47093 = 217 * 217 + 4

-----------------

4 = 2 * 2 + 0

54 = 41 * 1 + 13

1319 = 423 * 3 + 50 45419 = 213 * 213 + 50

-----------------

4 = 2 * 2 + 0

71 = 41 * 1 + 30

3071 = 427 * 7 + 82 47171 = 217 * 217 + 82
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2. a) Check your answer by executing the python code.

b) Proof. Argue by contradiction. Let x be the smallest integer for

which collatz(n) does not terminate. Assume that x is even, say

x = 2× y. Inputs to collatz are positive, so we can assume that x

is at least 2, so y is at least 1.

collatz(x) initializes parameter n with value x and then enters the

while loop. Case 1: n = 1. Execution skips the loop body.

Case 2: n 6= 1. Execution enters the loop body. Since n is even, n is

now assigned the value n//2, so the value of n is now y, and execu-

tion continues. Since y < x, by assumption collatz(y) terminates,

so the while loop execution terminates.

In each case the original execution of collatz(x) terminates, con-

tradicting our assumption. So our assumption must be false. So our

assumption that x is even must be false. So if the Collatz conjec-

ture fails for some integer, and x is the smallest such integer, then

x cannot be even, so x must be odd.
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3. Consider a call to ifib(n). Here are the operations performed:

a,b = 0,1

a,b = b, a+b (for loop, _ is 0)

a,b = b, a+b (for loop, _ is 1)

a,b = b, a+b ...

a,b = b, a+b (for loop, _ is n-1)

In each line we have the assignment a=b, the addition a+b, and the

asssignment b=a+b. For each of these three operations, the time

needed is proportional respectively to the number of bits in b, the

number of bits in the sum a+b, and the number of bits in the sum

a+b, so in time Θ(lg(b) + lg(a+ b) + lg(a+ b) = Θ(lg(a+ b)).

The number of bits needed to store an integer k is less than 1+lg(k)

so in Θ(lg(k)).

The j’th time the loop executes, a+ b = fib(j + 2),

so the total runtime is in

Θ(1) + Θ(
n−1∑

j=0

lg(fib(j + 2))) =

Θ(
n∑

j=1

lg(fib(j))) + Θ(lg(fib(n+ 1))) =

Θ(
n∑

j=1

lg(fib(j)))

since lg(fib(n+ 1)) s in Θ(lg(fib(n))).
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