first	name		last nan	ne		$\mathrm{id}\#$		
each	page 8 marks	30 min	clos	sed book	no devie	ces	3 pages	page 1
1.	Below is an imset in this gra	teger program (Il ph. Also below is	P) for findin s the dual o	ng a maximum of the IP.	indendent	a b	e	
	primal			dual				
	max x1 + x2	+ x3 + x4 + x8	ōs.t.	min y1 + y2	+ y3 + y4	+ y5 + y6	s.t.	
	x1 + x2		<= 1	y1 + y2			>= 1	
	x1	+ x3	<= 1	y1	+ y3 + y4		>= 1	
	x2	+ x3	<= 1	y2	+ y3	+ y5	>= 1	
	x2	+ x4	<= 1		y4	+ y6	>= 1	
		x3 + x5	5 <= 1			y5 + y6	>= 1	
		x4 + x5	5 <= 1					
	x1, x2, x3,	x4, x5 in {0,	1}	y1, y2,	y3, y4, y5	, y6 >= 0		

2. What does primal variable x_3 represent?

What does dual variable y_3 represent?

Justify/explain the primal objective function:

Justify/explain the dual objective function:

Justify/explain this primal constraint: $x_1 + x_2 \leq 1$.

Justify/explain this dual constraint: $y_1 + y_3 + y_4 \ge 1$.

3. Is x = (1, 0, 0, 0, 0) primal optimal? If yes, write it below: if no, find a primal optimal solution.
Is y = (1, 1, 1, 1, 1, 1) dual optimal? If yes, write it below: if no, find a dual optimal solution.
Your primal optimal solution:

Your dual optimal solution:

5. Let G be a weighted complete graph with at least 4 nodes and positive edge weights. Let v be a node in G and let H be the graph obtained by removing v and all edges incident with v. Let h be the weight of a min-weight Hamiltonian cycle in H. Let g be the weight of a min-weight Hamiltonian cycle in G. Prove/disprove: $h \leq g$.

first	name	last name				$\mathrm{id}\#$															
each	page 8 marks	30 min	closed book	no d	no devices					3]	pa	ges	5	page							
6.	On this instance, find	d the greedy se	et cover: in each step,		0	1 2	23	34	5	6	7	8	91	01	112	213	14	15			
	if there are ties the	en pick the set	t with smaller index,	SO	-	- >	k	- :	_	*	_	_	_	* -			*	-			
	e.g. if there is a tie b	between pickin	g S5 and S9, pick S5.	S1	_	- >	k		_	*	_	*	_	* >	* -	- *	*	-			
	Also, find a minimu	m size set cov	ver. Write each cover	S2	_		- *		_	_	_	_	_	* -			*	-			
	like this: $\{S0, S1, S2\}$	$2, S4\}.$		S3	_	- >	k -	- *	-	-	*	_	_	* -			*	*			
	a) your greedy set	t cover:		S4	_			• *	*	_	*	*	*				_	-			
				S5	_	- >	k -	• *	_	*	_	_	*	- >	* >	k –	_	-			
				S6	_	* *	k -	• *	_	*	_	_	*	- >	* >	k –	_	_			
	b) your min-size set cover:	S7	*		- *		*	_	*	*	_			- *	_	*					
				S8	_	* *	k -	• *	_	*	_	_	*	- >	* >	k –	*	-			
				S9	*		- *		*	_	*	*	_	* -		- *	_	*			
					0	1 2	23	34	5	6	7	8	91	01:	112	213	14	15			
				SO	-	- >	k		-	*	-	-	-	* -			*	-			
	Rough work here			S1	-	- >	k	- :	-	*	-	*	-	* >	* -	- *	*	-			
				S2	-		- *	- :	-	-	-	-	-	* -			*	-			
				S3	-	- >	k -	*	-	-	*	-	-	* -			*	*			
				S4	-			• *	*	-	*	*	*				-	-			
				S5	-	- >	k -	• *	-	*	-	-	*	- >	* >	k –	-	-			
				S6	-	* *	k -	• *	_	*	_	-	*	- >	* >	k –	_	-			
					*		- *		*	_	*	*	-			- *	_	*			
				S8	-	* *	k -	*	_	*	_	_	*	- >	* >	k –	*	-			
				S9	*		- *		*	-	*	*	-	* -		- *	-	*			

7. Consider the greedy set cover algorithm on an instance with 50 elements and minimum cover size 9. Let n_t be the number of elements not yet in the cover after t iterations of the algorithm.

a) Give the best upper bound you can for n_1 . Justify briefly.

a) Give the best upper bound you can for n_2 . Justify briefly.

first	name		last nan	ne		$\mathrm{id}\#$		
each	page 8 marks	30 min	clos	sed book	no devie	ces	3 pages	page 1
1.	Below is an imset in this gra	teger program (Il ph. Also below is	P) for findin s the dual o	ng a maximum of the IP.	indendent	a b	e	
	primal			dual				
	max x1 + x2	+ x3 + x4 + x8	ōs.t.	min y1 + y2	+ y3 + y4	+ y5 + y6	s.t.	
	x1 + x2		<= 1	y1 + y2			>= 1	
	x1	+ x3	<= 1	y1	+ y3 + y4		>= 1	
	x2	+ x3	<= 1	y2	+ y3	+ y5	>= 1	
	x2	+ x4	<= 1		y4	+ y6	>= 1	
		x3 + x5	5 <= 1			y5 + y6	>= 1	
		x4 + x5	5 <= 1					
	x1, x2, x3,	x4, x5 in {0,	1}	y1, y2,	y3, y4, y5	, y6 >= 0		

2. What does primal variable x_3 represent?

What does dual variable y_3 represent?

Justify/explain the primal objective function:

Justify/explain the dual objective function:

Justify/explain this primal constraint: $x_1 + x_2 \leq 1$.

Justify/explain this dual constraint: $y_1 + y_3 + y_4 \ge 1$.

3. Is x = (1, 0, 0, 0, 0) primal optimal? If yes, write it below: if no, find a primal optimal solution.
Is y = (1, 1, 1, 1, 1, 1) dual optimal? If yes, write it below: if no, find a dual optimal solution.
Your primal optimal solution:

Your dual optimal solution:

5. Let G be a weighted complete graph with at least 4 nodes and positive edge weights. Let v be a node in G and let H be the graph obtained by removing v and all edges incident with v. Let h be the weight of a min-weight Hamiltonian cycle in H. Let g be the weight of a min-weight Hamiltonian cycle in G. Prove/disprove: $h \leq g$.

first	rst name last name			$\mathrm{id}\#$																
each	page 8 marks	30 min	closed book	no d	no devices						3 p	bag	ges	s page						
6.	On this instance, find	the greedy se	et cover: in each step,		0	1	2	3	4	5	6	7	8	91	011	121	131	.41	5	
	if there are ties then	pick the set	with smaller index,	SO	_	_	*	*	_	_	*	_	_	- :	* -	_	_	*	_	
	e.g. if there is a tie be	etween pickin	g S5 and S9, pick S5.	S1	_	_	*	*	_	_	*	-	*	- :	* *	-	*	*	_	
	Also, find a minimum	n size set cov	er. Write each cover	S2	-	_	*	_	*	_	-	*	-	- :	* -	_	_	*	*	
	like this: $\{S0, S1, S2,$	S4}.		S3	-	-	_	_	*	*	_	*	*	* ·		-	_	_	_	
	a) your greedy set	cover:		S4	-	-	*	_	*	_	*	-	-	* ·	- *	*	_	_	_	
				S5	-	*	*	_	*	_	*	-	-	* ·	- *	*	_	_	_	
				S6	*	_	-	*	_	*	-	*	*			_	*	_	*	
	b) your min-size se	t cover:		S7	-	*	*	_	*	_	*	-	-	* ·	- *	*	_	*	_	
				S8	-	_	-	*	_	_	-	-	-	- :	* -	_	_	*	_	
				S9	*	_	-	*	_	*	-	*	*	- :	* -	_	*	_	*	
					0	1	2	3	4	5	6	7	8	91	011	121	131	.41	.5	
				SO	-	-	*	*	-	-	*	-	-	- :	* -	-	-	*	-	
	Rough work here			S1	-	-	*	*	-	-	*	-	*	- :	* *	-	*	*	-	
				S2	-	-	*	-	*	-	-	*	-	- :	* -	-	-	*	*	
				S3	-	-	-	-	*	*	-	*	*	* ·		-	-	-	-	
				S4	-	-	*	-	*	-	*	-	-	* ·	- *	*	-	-	-	
				S5	-	*	*	-	*	-	*	-	-	* ·	- *	*	-	-	-	
				S6	*	-	-	*	-	*	-	*	*			-	*	-	*	
					-	*	*	-	*	-	*	-	-	* ·	- *	*	-	*	-	
				S8	-	-	-	*	-	-	-	-	-	- :	* -	-	_	*	-	
				S9	*	-	-	*	-	*	-	*	*	- :	* -	-	*	-	*	

7. Consider the greedy set cover algorithm on an instance with 50 elements and minimum cover size 8. Let n_t be the number of elements not yet in the cover after t iterations of the algorithm.

a) Give the best upper bound you can for n_1 . Justify briefly.

a) Give the best upper bound you can for n_2 . Justify briefly.

first	name		last nan	ne		$\mathrm{id}\#$		
each	page 8 marks	30 min	clos	sed book	no devie	ces	3 pages	page 1
1.	Below is an imset in this gra	teger program (Il ph. Also below is	P) for findin s the dual o	ng a maximum of the IP.	indendent	a b	e	
	primal			dual				
	max x1 + x2	+ x3 + x4 + x8	ōs.t.	min y1 + y2	+ y3 + y4	+ y5 + y6	s.t.	
	x1 + x2		<= 1	y1 + y2			>= 1	
	x1	+ x3	<= 1	y1	+ y3 + y4		>= 1	
	x2	+ x3	<= 1	y2	+ y3	+ y5	>= 1	
	x2	+ x4	<= 1		y4	+ y6	>= 1	
		x3 + x5	5 <= 1			y5 + y6	>= 1	
		x4 + x5	5 <= 1					
	x1, x2, x3,	x4, x5 in {0,	1}	y1, y2,	y3, y4, y5	, y6 >= 0		

2. What does primal variable x_3 represent?

What does dual variable y_3 represent?

Justify/explain the primal objective function:

Justify/explain the dual objective function:

Justify/explain this primal constraint: $x_1 + x_2 \leq 1$.

Justify/explain this dual constraint: $y_1 + y_3 + y_4 \ge 1$.

3. Is x = (1, 0, 0, 0, 0) primal optimal? If yes, write it below: if no, find a primal optimal solution.
Is y = (1, 1, 1, 1, 1, 1) dual optimal? If yes, write it below: if no, find a dual optimal solution.
Your primal optimal solution:

Your dual optimal solution:

5. Let G be a weighted complete graph with at least 4 nodes and positive edge weights. Let v be a node in G and let H be the graph obtained by removing v and all edges incident with v. Let h be the weight of a min-weight Hamiltonian cycle in H. Let g be the weight of a min-weight Hamiltonian cycle in G. Prove/disprove: $h \leq g$.

first	name	last name				$\mathrm{id}\#$															
each	page 8 marks	30 min	closed book	no d	no devices						3]	pa	ge	s	page						
6.	On this instance, find	d the greedy se	et cover: in each step,		0	1	2	3	4	5	6	7	8	91	.01	11	21	31	41	5	
	if there are ties the	n pick the set	t with smaller index,	SO	-	_	*	*	_	-	*	_	_	_	*	_	_	-	*	-	
	e.g. if there is a tie b	etween pickin	g S5 and S9, pick S5.	S1	_	_	*	*	_	-	*	_	*	_	*	*	-	*	*	-	
	Also, find a minimum	m size set cov	ver. Write each cover	S2	_	_	*	_	*	-	_	*	_	_	*	-	-	_	*	*	
	like this: $\{S0, S1, S2\}$	2, S4}.		S3	-	-	_	-	*	*	_	*	*	*	_	_	-	_	-	_	
	a) your greedy set	cover:		S4	_	_	*	_	*	-	*	_	_	*	-	*	*	_	-	-	
				S5	_	*	*	_	*	_	*	_	_	*	-	*	*	_	_	_	
				S6	_	-	_	*	_	_	_	_	_	_	*	_	-	_	*	_	
	b) your min-size set cover:		S7	*	-	_	*	_	*	_	*	*	_	_	_	-	*	_	*		
	, -			S8	_	*	*	_	*	_	*	_	_	*	-	*	*	_	*	_	
				S9	*	_	_	*	_	*	_	*	*	_	*	_	_	*	_	*	
					0	1	2	3	4	5	6	7	8	91	.01	11	21	31	41	5	
				SO	-	-	*	*	-	-	*	-	-	-	*	-	-	-	*	-	
	Rough work here			S1	-	-	*	*	-	-	*	-	*	-	*	*	-	*	*	-	
				S2	-	-	*	-	*	-	-	*	-	-	*	-	-	-	*	*	
				S3	-	-	-	-	*	*	-	*	*	*	-	-	-	-	-	-	
				S4	-	-	*	-	*	-	*	-	-	*	-	*	*	-	-	-	
				S5	-	*	*	-	*	-	*	-	-	*	-	*	*	-	-	-	
				S6	-	-	-	*	-	-	_	-	_	-	*	-	-	-	*	-	
					*	-	-	*	-	*	_	*	*	-	_ 1	-	-	*	-	*	
				S8	-	*	*	-	*	-	*	-	-	*	-	*	*	-	*	-	
				S9	*	-	-	*	-	*	-	*	*	-	*	-	-	*	-	*	

7. Consider the greedy set cover algorithm on an instance with 50 elements and minimum cover size 7. Let n_t be the number of elements not yet in the cover after t iterations of the algorithm.

a) Give the best upper bound you can for n_1 . Justify briefly.

a) Give the best upper bound you can for n_2 . Justify briefly.