1. Below is an integer program (IP) for finding a maximum indendent set in this graph. Also below is the dual of the IP.
no devices 3 pages

```
primal dual
```

primal dual
max x1 + x2 + x3 + x4 + x5 s.t. min y1 + y2 + y3 + y4 + y5 + y6 s.t.
max x1 + x2 + x3 + x4 + x5 s.t. min y1 + y2 + y3 + y4 + y5 + y6 s.t.
x1 + x2 <= 1 y1 + y2 >= 1
x1 + x2 <= 1 y1 + y2 >= 1
x1 < x3 <= 1 y1 + y3 + y4 >= 1

```
    x1 < x3 <= 1 y1 + y3 + y4 >= 1
```



```
    x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
```

 x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
 x1, x2, x3, x4, x5 in {0, 1}
x1, x2, x3, x4, x5 in {0, 1}
x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}\&{<=1}\\{\textrm{x}2=1}

```
    x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
```

4. For the complete graph with these edge weights, give the Hamiltonian cycle found by the 1.5 -approx method. When shortcutting your Eulerian tour, start at node E and whenever you have a choice, pick the alphabetically- C first choice. Use below left for your rough work. Show your matching-plus-MST below middle. Show your cycle below right.

	B	C	D	E	F	G	H	I	J
A	5	2	4	4	6	7	7	9	9
B		6	2	4	6	5	9	11	8
C			4	3	4	7	5	8	7
D				2	4	4	7	9	7
E					2	4	5	7	5
F						4	3	4	3
G						7	7	4	
H							3	4	
I								4	

5. Let G be a weighted complete graph with at least 4 nodes and positive edge weights. Let v be a node in G and let H be the graph obtained by removing v and all edges incident with v. Let h be the weight of a min-weight Hamiltonian cycle in H. Let g be the weight of a min-weight Hamiltonian cycle in G. Prove/disprove: $h \leq g$.
6. On this instance, find the greedy set cover: in each step, if there are ties then pick the set with smaller index, e.g. if there is a tie between picking S 5 and S 9 , pick S 5 .

Also, find a minimum size set cover. Write each cover like this: $\{\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 4\}$.
a) your greedy set cover:
b) your min-size set cover:

Rough work here

0123456789101112131415
S0 - - * * - * - - * - - *
S2 - - - * - - - - * - - *
S3 - - * - * - - * - - * - - * *
S4 - - - - * * - * * * - - - - -
S5 - - * - * - * - * - * * - - -

S7 * - - * - * - * * - - - * - *
S8 - * * - * - * - - * - * * - * -
S9 * - - * - * - * * - * - - * - *
0123456789101112131415
S0 - - * * - * - - - * - - - * -
S1 - - * * - * - * - * * - * * -
S2 - - - * - - - - * - - *
S3 - - * - * - - * - - * - - - * *
S4 - - - - * * $* * *$ - _ - - -
S5 - - * - * - * - * - * * - -
S6 - * * - * - * - - * - * * - - -
S7 * - - * - * - * * - - - - * - *
S8 - * * - * - * - - * - * * - * -
S9 * - - * - * * * - * - - * - *
7. Consider the greedy set cover algorithm on an instance with 50 elements and minimum cover size 9 . Let n_{t} be the number of elements not yet in the cover after t iterations of the algorithm.
a) Give the best upper bound you can for n_{1}. Justify briefly.
a) Give the best upper bound you can for n_{2}. Justify briefly.

1. Below is an integer program (IP) for finding a maximum indendent set in this graph. Also below is the dual of the IP.
no devices 3 pages

```
primal dual
```

primal dual
max x1 + x2 + x3 + x4 + x5 s.t. min y1 + y2 + y3 + y4 + y5 + y6 s.t.
max x1 + x2 + x3 + x4 + x5 s.t. min y1 + y2 + y3 + y4 + y5 + y6 s.t.
x1 + x2 <= 1 y1 + y2 >= 1
x1 + x2 <= 1 y1 + y2 >= 1
x1 < x3 <= 1 y1 + y3 + y4 >= 1

```
    x1 < x3 <= 1 y1 + y3 + y4 >= 1
```



```
    x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
```

 x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
 x1, x2, x3, x4, x5 in {0, 1}
x1, x2, x3, x4, x5 in {0, 1}
x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}\&{<=1}\\{\textrm{x}2=1}

```
    x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
```

4. For the complete graph with these edge weights, give the Hamiltonian cycle found by the 1.5 -approx method. When shortcutting your Eulerian tour, start at node A and whenever you have a choice, pick the alphabetically- C first choice. Use below left for your rough work. Show your matching-plus-MST below middle. Show your cycle below right.

	B	C	D	E	F	G	H	I	J
A	5	2	4	4	6	7	7	9	9
B		6	2	4	6	5	9	11	8
C			4	3	4	7	5	8	7
D			2	4	4	7	9	7	
E				2	4	5	7	5	
F					4	3	4	3	
G						7	7	4	
H							3	4	
I								4	

5. Let G be a weighted complete graph with at least 4 nodes and positive edge weights. Let v be a node in G and let H be the graph obtained by removing v and all edges incident with v. Let h be the weight of a min-weight Hamiltonian cycle in H. Let g be the weight of a min-weight Hamiltonian cycle in G. Prove/disprove: $h \leq g$.
6. On this instance, find the greedy set cover: in each step, if there are ties then pick the set with smaller index, e.g. if there is a tie between picking S 5 and S 9 , pick S 5 .

Also, find a minimum size set cover. Write each cover like this: $\{\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 4\}$.
a) your greedy set cover:
b) your min-size set cover:

Rough work here

0123456789101112131415

S2 S3

7. Consider the greedy set cover algorithm on an instance with 50 elements and minimum cover size 8 . Let n_{t} be the number of elements not yet in the cover after t iterations of the algorithm.
a) Give the best upper bound you can for n_{1}. Justify briefly.
a) Give the best upper bound you can for n_{2}. Justify briefly.

1. Below is an integer program (IP) for finding a maximum indendent set in this graph. Also below is the dual of the IP.
no devices 3 pages

```
primal dual
```

primal dual
max x1 + x2 + x3 + x4 + x5 s.t. min y1 + y2 + y3 + y4 + y5 + y6 s.t.
max x1 + x2 + x3 + x4 + x5 s.t. min y1 + y2 + y3 + y4 + y5 + y6 s.t.
x1 + x2 <= 1 y1 + y2 >= 1
x1 + x2 <= 1 y1 + y2 >= 1
x1 < x3 <= 1 y1 + y3 + y4 >= 1

```
    x1 < x3 <= 1 y1 + y3 + y4 >= 1
```



```
    x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
```

 x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
 x1, x2, x3, x4, x5 in {0, 1}
x1, x2, x3, x4, x5 in {0, 1}
x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}\&{<=1}\\{\textrm{x}2=1}

```
    x2+\textrm{x}3}\begin{array}{rl}{\textrm{x}+\textrm{x}4}&{<=1}\\{\textrm{x}2=1}
```

4. For the complete graph with these edge weights, give the Hamiltonian cycle found by the 1.5 -approx method. When shortcutting your Eulerian tour, start at node C and whenever you have a choice, pick the alphabeticallyfirst choice. Use below left for your rough work. Show your matching-plus-MST below middle. Show your cycle below right.

	B	C	D	E	F	G	H	I	J
A	5	2	4	4	6	7	7	9	9
B		6	2	4	6	5	9	11	8
C			4	3	4	7	5	8	7
D			2	4	4	7	9	7	
E				2	4	5	7	5	
F					4	3	4	3	
G						7	7	4	
H							3	4	
I								4	

5. Let G be a weighted complete graph with at least 4 nodes and positive edge weights. Let v be a node in G and let H be the graph obtained by removing v and all edges incident with v. Let h be the weight of a min-weight Hamiltonian cycle in H. Let g be the weight of a min-weight Hamiltonian cycle in G. Prove/disprove: $h \leq g$.
6. On this instance, find the greedy set cover: in each step, if there are ties then pick the set with smaller index, e.g. if there is a tie between picking S 5 and S 9 , pick S 5 .

Also, find a minimum size set cover. Write each cover like this: $\{\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 4\}$.
a) your greedy set cover:
b) your min-size set cover:

Rough work here

0123456789101112131415
S2 - - * - * - * - - * - - * *
S3 - - - - * * - * * * - - - - -
S4 - - * - * - * - - * - * * - - -
S5 - * * - * - * - - * - * * - -
S6 - - - * - - - - * - - $*-$
S7 * - - * - * $* *$ - - - * - *
S8 - * * - * - * - - * - * * - * -
S9 * - - * - * - * * - * - - * - *
0123456789101112131415
S0 - - * * - * - - * - - *
S1 - - * * - * - * - * * - * * -
S2 - - * - * - * - - * - - * *
S3 - - - - * * - * * * - - - - -
S4 - - * - * - * - * - * * - - -
S5 - * * - * - * - - * - * * - -
S6 - - - * - - - - - * - - * -
S7
S8

S9
7. Consider the greedy set cover algorithm on an instance with 50 elements and minimum cover size 7 .

Let n_{t} be the number of elements not yet in the cover after t iterations of the algorithm.
a) Give the best upper bound you can for n_{1}. Justify briefly.
a) Give the best upper bound you can for n_{2}. Justify briefly.

