1. Give the postorder traversal sequence of the transpose of this digraph, assuming that its node list and neighbor lists are stored in alphabetic order.

Write your answer here:

2. Using your answer to the previous question, list the strongly connected components of the digraph in the order that they are found by the algorithm from class.

Write your answer here:
3. Let D be a digraph with nodes x, y such that there is a directed path $p_{x y}$ from x to y and a directed path $p_{y x}$ from y to x. Prove/disprove: in the transpose D^{T} of D there is a directed path $q_{x y}$ from x to y and a directed path $q_{y x}$ from y to x.
4. (a) On the nodes below, draw the implication digraph for this 2-sat formula:

$$
f=\left[\begin{array}{ll}
1 & -5
\end{array}\right]\left[\begin{array}{ll}
-2 & -4
\end{array}\right]\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{ll}
-4 & -5
\end{array}\right]\left[\begin{array}{ll}
2 & 5
\end{array}\right]\left[\begin{array}{ll}
-1 & -5
\end{array}\right] .
$$

(b) Is the formula satisfiable? If yes, give a satisfying assignment; if no, explain.
5. A node is simplicial in a graph if its set of neighbors is a clique.
(a) List all the simplicial nodes in this graph.

Write your answer here:

(b) In a graph G, let v be a simplicial node, let M be the non-neighbors of v, and let I_{M} be an independent set in $G[M]$. Prove that $\{v\} \cup I_{M}$ is an independent set in G.

This is the graph G :
6. (a) Formulate the problem of finding a largest independent set in G as an integer program. Explain briefly.
(b) If you solve your answer to (a) using the mixed-integer-program solver at sagemath, will the solution be all integer, or might there be some non-integer (fractional) values in the solution? Explain.

1. Give the postorder traversal sequence of the transpose of this digraph, assuming that its node list and neighbor lists are stored in alphabetic order.

Write your answer here:

2. Using your answer to the previous question, list the strongly connected components of the digraph in the order that they are found by the algorithm from class.

Write your answer here:
3. Let D be a digraph with nodes x, y such that there is a directed path $p_{x y}$ from x to y and a directed path $p_{y x}$ from y to x. Prove/disprove: in the transpose D^{T} of D there is a directed path $q_{x y}$ from x to y and a directed path $q_{y x}$ from y to x.
4. (a) On the nodes below, draw the implication digraph for this 2-sat formula:

$$
f=\left[\begin{array}{ll}
1 & -5
\end{array}\right]\left[\begin{array}{ll}
-2 & -3
\end{array}\right]\left[\begin{array}{ll}
-2 & -4
\end{array}\right]\left[\begin{array}{ll}
-4 & -5
\end{array}\right]\left[\begin{array}{ll}
2 & 5
\end{array}\right]\left[\begin{array}{ll}
-1 & -5
\end{array}\right] .
$$

(b) Is the formula satisfiable? If yes, give a satisfying assignment; if no, explain.
5. A node is simplicial in a graph if its set of neighbors is a clique.
(a) List all the simplicial nodes in this graph.

Write your answer here:

(b) In a graph G, let v be a simplicial node, let M be the non-neighbors of v, and let I_{M} be an independent set in $G[M]$. Prove that $\{v\} \cup I_{M}$ is an independent set in G.

This is the graph G :
6. (a) Formulate the problem of finding a largest independent set in G as an integer program. Explain briefly.
(b) If you solve your answer to (a) using the mixed-integer-program solver at sagemath, will the solution be all integer, or might there be some non-integer (fractional) values in the solution? Explain.

1. Give the postorder traversal sequence of the transpose of this digraph, assuming that its node list and neighbor lists are stored in alphabetic order.

Write your answer here:

2. Using your answer to the previous question, list the strongly connected components of the digraph in the order that they are found by the algorithm from class.

Write your answer here:
3. Let D be a digraph with nodes x, y such that there is a directed path $p_{x y}$ from x to y and a directed path $p_{y x}$ from y to x. Prove/disprove: in the transpose D^{T} of D there is a directed path $q_{x y}$ from x to y and a directed path $q_{y x}$ from y to x.
4. (a) On the nodes below, draw the implication digraph for this 2-sat formula:

$$
f=\left[\begin{array}{ll}
1 & -5
\end{array}\right]\left[\begin{array}{ll}
-2 & -3
\end{array}\right]\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{ll}
-4 & -5
\end{array}\right]\left[\begin{array}{ll}
-2 & -4
\end{array}\right]\left[\begin{array}{ll}
-1 & -5
\end{array}\right] .
$$

(b) Is the formula satisfiable? If yes, give a satisfying assignment; if no, explain.
5. A node is simplicial in a graph if its set of neighbors is a clique.
(a) List all the simplicial nodes in this graph.

Write your answer here:

(b) In a graph G, let v be a simplicial node, let M be the non-neighbors of v, and let I_{M} be an independent set in $G[M]$. Prove that $\{v\} \cup I_{M}$ is an independent set in G.

This is the graph G :

6. (a) Formulate the problem of finding a largest independent set in G as an integer program. Explain briefly.
(b) If you solve your answer to (a) using the mixed-integer-program solver at sagemath, will the solution be all integer, or might there be some non-integer (fractional) values in the solution? Explain.

